
Demuxafy
Release 0.0.3

Drew Neavin

Apr 29, 2022

GENERAL

1 Reason for this Software 1

2 Demultiplexing and Doublet Detecting Summary 3
2.1 Background . 4
2.2 Support . 6
2.3 Software Selection Recommendations . 7
2.4 Installation . 8
2.5 Data Preparation . 9
2.6 Considerations for Other Single Cell Data Types . 12
2.7 Notes About Singularity Images . 14
2.8 Contact . 14
2.9 Overview of Demultiplexing Softwares . 15
2.10 Demuxlet . 15
2.11 Freemuxlet . 19
2.12 ScSplit . 30
2.13 Souporcell . 41
2.14 Vireo . 54
2.15 Overview of Doublet Detecting Softwares . 58
2.16 DoubletDecon . 58
2.17 DoubletDetection . 63
2.18 DoubletFinder . 67
2.19 ScDblFinder . 72
2.20 Scds . 74
2.21 Scrublet . 77
2.22 Solo . 82
2.23 Combining Results . 86

3 Support 95

i

ii

CHAPTER

ONE

REASON FOR THIS SOFTWARE

Demultiplexing and detecting doublets is an important part of droplet-based scRNA-seq processing pipelines (see
additional information and details below).

We described some of the best combinations of methods in our manuscript for demultiplexing and doublet detecting
(also detailed in the Software Selection Recommendations). However, we acknowledge that each dataset is different
and may have unique characteristics that make other softwares more suited. Therefore, we have developed Demuxafy
to enable each user to choose and run the demultiplexing and doublet detecting analyses of their choice smoothly and
efficiently.

Fig. 1: Figure 1: Demuxafy | Demuxafy provides a simple framework for demultiplexing and classifying doublets in
a wide range of droplet-based scRNA-seq captures.

Demuxafy contains all of the software you will need for any analysis into a singularity image that can be easily run on
most HPCs. This means that you do not need to install each software separately and provides standardization across
studies and/or collaborations. We have also built scripts that will easly summarize the results from each software for
you - making the assessment of the success of a software faster and easier. Finally, we provide a simple command that
will easily combine the results from each of the individual softwares into a common dataframe and provide summary
statistics about that combination.

We try our best to include all the possible methods for demultiplexing and doublet detecting in this image and maintain
them up-to-date. If you notice a demultiplexing or doublet detecting software for scRNA-seq data that we have not
included, please reach out to us.

1

Demuxafy, Release 0.0.3

2 Chapter 1. Reason for this Software

CHAPTER

TWO

DEMULTIPLEXING AND DOUBLET DETECTING SUMMARY

Fig. 1: Figure 2: Multiplexed Single Cell Captures |
Cells from multiple donors can be pooled before capture.
The goal post-capture is then to assign the singlets to the
correct donor and to classify doublets for removal.

As droplet-based single cell technologies have advanced,
increasingly larger sample numbers have been used to an-
swer research questions at single cell resolution. This has
been made possible because, as the droplet-based capture
technologies have been optimized, methods to pool and
then demultiplex samples - assign droplets to each individ-
ual in the pool - have been developed (Figure 2). These
multiplexing methods clearly decrease cost and time of
scRNA-seq experiments.

With a larger number of droplets captured, there is an in-
crease in the proportion of the droplets that are doublets
(Figure 3). If left in the dataset, doublets can significantly
impact scientific conclusions such as identifying spurious
cell trajectories or false novel cell types. Therefore, it’s cru-
cial to effectively clean datasets prior to downstream anal-
yses.

Fig. 2: Figure 3: Doublets per Number Droplets Captured | Large droplet-based single cell captures result in large
proportions of doublets.

In addition to demultiplexing softwares, there are also dou-
blet detecting softwares that use the transcriptional pro-

3

Demuxafy, Release 0.0.3

files of droplets to identify doublets by simulating dou-
blets. Both demultiplexing and doublet doublet detecting
softwares can be used to identify doublets in a dataset but
identify differen types of doublets. Demultiplexing meth-
ods can identify doublets from two different individuals
whereases transcription-based doublet detecting methods
can identify doublets between two different cell types (Fig-
ure 4). This makes these two method types complementary
for demultiplexing and doublet removal.

Fig. 3: Figure 4: Doublets Identified by Demultiplexing and Doublet Detecting Methods | Doublets can contain
cells from different individuals or the same donor and the same or different cell types. Demultiplexing methods can
only identify doublets from two different individuals while doublet detecting methods can only identify doublets from
two different cell types.

2.1 Background

2.1.1 Reason for this Software

Demultiplexing and detecting doublets is an important part
of droplet-based scRNA-seq processing pipelines (see ad-
ditional information and details below).

We described some of the best combinations of methods
in our manuscript for demultiplexing and doublet detecting
(also detailed in the Software Selection Recommendations).
However, we acknowledge that each dataset is different and
may have unique characteristics that make other softwares
more suited. Therefore, we have developed Demuxafy to
enable each user to choose and run the demultiplexing and

4 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

doublet detecting analyses of their choice smoothly and ef-
ficiently.

Fig. 4: Figure 1: Demuxafy | Demuxafy provides a simple framework for demultiplexing and classifying doublets in
a wide range of droplet-based scRNA-seq captures.

Demuxafy contains all of the software you will need for
any analysis into a singularity image that can be easily run
on most HPCs. This means that you do not need to in-
stall each software separately and provides standardization
across studies and/or collaborations. We have also built
scripts that will easly summarize the results from each soft-
ware for you - making the assessment of the success of
a software faster and easier. Finally, we provide a simple
command that will easily combine the results from each of
the individual softwares into a common dataframe and provide summary statistics about that combination.

We try our best to include all the possible methods for demultiplexing and doublet detecting in this image and maintain
them up-to-date. If you notice a demultiplexing or doublet detecting software for scRNA-seq data that we have not
included, please reach out to us.

2.1.2 Demultiplexing and Doublet Detecting Summary

Fig. 5: Figure 2: Multiplexed Single Cell Captures |
Cells from multiple donors can be pooled before capture.
The goal post-capture is then to assign the singlets to the
correct donor and to classify doublets for removal.

As droplet-based single cell technologies have advanced,
increasingly larger sample numbers have been used to an-
swer research questions at single cell resolution. This has
been made possible because, as the droplet-based capture
technologies have been optimized, methods to pool and
then demultiplex samples - assign droplets to each individ-
ual in the pool - have been developed (Figure 2). These
multiplexing methods clearly decrease cost and time of
scRNA-seq experiments.

With a larger number of droplets captured, there is an in-
crease in the proportion of the droplets that are doublets
(Figure 3). If left in the dataset, doublets can significantly
impact scientific conclusions such as identifying spurious
cell trajectories or false novel cell types. Therefore, it’s cru-

2.1. Background 5

Demuxafy, Release 0.0.3

cial to effectively clean datasets prior to downstream anal-
yses.

Fig. 6: Figure 3: Doublets per Number Droplets Captured | Large droplet-based single cell captures result in large
proportions of doublets.

In addition to demultiplexing softwares, there are also dou-
blet detecting softwares that use the transcriptional pro-
files of droplets to identify doublets by simulating dou-
blets. Both demultiplexing and doublet doublet detecting
softwares can be used to identify doublets in a dataset but
identify differen types of doublets. Demultiplexing meth-
ods can identify doublets from two different individuals
whereases transcription-based doublet detecting methods
can identify doublets between two different cell types (Fig-
ure 4). This makes these two method types complementary
for demultiplexing and doublet removal.

2.2 Support

If you’re having trouble with any part of the Demultiplexing
and Doublet Detecting Pipeline, feel free to submit an issue.

6 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/drneavin/Demultiplexing_Doublet_Detecting_Docs/issues

Demuxafy, Release 0.0.3

Fig. 7: Figure 4: Doublets Identified by Demultiplexing and Doublet Detecting Methods | Doublets can contain
cells from different individuals or the same donor and the same or different cell types. Demultiplexing methods can
only identify doublets from two different individuals while doublet detecting methods can only identify doublets from
two different cell types.

2.3 Software Selection Recom-
mendations

Based on our analysis of demultiplexing and doublet detect-
ing softwares, we have generated the following decision tree
to help other researchers elect the best set of softwares for
their dataset.

After you have run the softwares you selected, we have pro-
vided a script that will help merge and summarize the re-
sults from ethe softwares together. See Combine Results.

2.3. Software Selection Recommendations 7

Demuxafy, Release 0.0.3

2.4 Installation

Installation should be pretty painless (we hope). We have
provided all the softwares in a singularity image which pro-
vides continuity across different computing platforms (see
HPCNG Singluarity and Sylabs io for more information
on singularity images). The only thing to note before you
download this image is that the image is ~6.5Gb so, de-
pending on the internet speed, it will take ~15-30 min to
download. The good news is that you should only need to
do this once unless updates are made to the scripts or image.

Just download the singluarity image with:

wget https://www.dropbox.com/s/q3hpbqa7gahbrhf/Demuxafy.sif
wget https://www.dropbox.com/s/583b8cxko3lc0y1/Demuxafy.sif.md5

Then you should check to make sure that the image downloaded completely by comparing the image md5sum to the
original md5sum. You can do that by running the following commands:

md5sum Demuxafy.sif > downloaded_Demuxafy.sif.md5
diff -s Demuxafy.sif.md5 downloaded_Demuxafy.sif.md5

If everything was downloaded correctly, that command should report:

Files Demuxafy.sif.md5 and downloaded_Demuxafy.sif.md5 are identical

Note: Please note that the singularity image and this documentation is updated with each release. This means that
the most recent documentation may not be 100% compatible with the singularity image that you have. For example,
additional parameters and functionality were implemented in v1.0.2 that was not available in v0.0.4.

You can check the version of your singularity image to match with documentation with:

singularity inspect Demuxafy.sif

If you run into any issues with downloading the image or any issue with running anything from this image, you can
reach out to us by submitting an issue at Github

Demuxafy software versions - for the curious

Image build date: 11 March, 2022

Software Group Software Version
Demultiplexing

popscle
• demuxlet
• freemuxlet

v0.1-beta

scSplit v1.0.8.2
Souporcell v2.0
Vireo v0.5.6

continues on next page

8 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://singularity.hpcng.org/
https://sylabs.io/singularity/
https://github.com/drneavin/Demultiplexing_Doublet_Detecting_Docs/issues

Demuxafy, Release 0.0.3

Table 1 – continued from previous page
Software Group Software Version
Doublet Detecting DoubletDecon v1.1.6

DoubletDetection v3.0
DoubletFinder v2.0.3
scDblFinder v1.8.0
scds v1.9.1
scrublet v0.2.3
solo v1.2

Supporting Softwares minimap2 v2.7-r654
bedtools2 v2.28.0
vartrix v1.1.3
htslib v1.13 & v1.14
samtools v1.15
bcftools v1.13
freebayes v1.3.5
cellSNP-lite v1.2.2

R Supporting Packages (R
v4.1.3)

argparse v2.1.3
ComplexHeatmap v2.10.0
ComplexUpset v1.3.3
vcfR v1.12.0
Seurat 4.1.0
SingleCellExperiment v1.16.0

Python Supporting Packages
(Python v3.7.2)

argparse v1.4.0
numpy v1.21.2
matplotlib v3.2.2
pandas v1.3.5
PyVCF v0.6.8
scipy v1.7.3
scvi-tools v0.14.6
umap-learn v0.5.2

2.5 Data Preparation

There isn’t a lot of data preparation to be done before running the demultiplexing or doublet detecting softwares.

2.5.1 Data Required

The demultiplexing and transcriptome-based doublet detecting softwares have different data input requirements:

Software Group
Single Cell Count Data Required SNP Genotype Data Required

Demultiplexing
XXX XXX

Doublet Detecting
XXX ×××

2.5. Data Preparation 9

Demuxafy, Release 0.0.3

Note: The SNP genotype data can be for multiplexed donors in the pool OR it can be publicly available common SNP
genotypes which can be downloaded from 1000G (hg19 and hg38) or from HRC (hg19 only).

For 1000G, use the instructions at the above link to access the data per your preferences and you can find the required
files at the following directories:

• The hg19 data is available at /ftp/release/

• The hg38 data is available at /ftp/release/20130502/supporting/GRCh38_positions/

You won’t need to pre-process the single cell count data unless you are using DoubletFinder or DoubletDecon which
need QC-filtered and normalized counts (for example with Seurat).

For the demultiplexing softwares, you should filter the SNP genotypes that you will use.

2.5.2 SNP Genotype Pre-processing

It is best to filter the SNP genotypes for common SNPs (generally > 1% or > 5% minor allele frequency) that overlap
exons. Here we provide an example of how to do this filtering. We built the required softwares into the singularity
image so you can run these filtering steps with the image.

Note: We have found it best to impute reference SNP genotypes so there are more SNP locations available. If you are
using reference SNP genotypes for the donors in your pool, please be sure to impute before filtering.

Filter for Common SNPs

First, filter the SNP genotypes for common SNPs - 5% minor allele frequency should work for most datasets but you
can change this to another minor allele frequency if you would like.

singularity exec Demuxafy.sif bcftools filter --include 'MAF>=0.05' -Oz --output $OUTDIR/
→˓common_maf0.05.vcf.gz $VCF

Where $OUTDIR is the output directory where you want to save the results and $VCF is the path to the SNP genotype
vcf file.

Filter for SNPs overlapping Exons

Next, filter for the SNPs that overlap exons.

Note: You can get an exon bed using the UCSC table browser (see instructions here) and we have also provided bed
files for hg19 and hg38

singularity exec Demuxafy.sif vcftools \
--gzvcf $OUTDIR/common_maf0.05.vcf.gz \
--max-alleles 2 \
--remove-indels \
--bed $BED \
--recode \

(continues on next page)

10 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://www.internationalgenome.org/category/ftp/
http://www.haplotype-reference-consortium.org/site
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://genome.ucsc.edu/cgi-bin/hgTables
https://www.biostars.org/p/93011/

Demuxafy, Release 0.0.3

(continued from previous page)

--recode-INFO-all \
--out $OUTDIR/common_maf0.05_exon_filtered

2.5.3 Test Dataset

In addition, we have provided test data that you can use.

Information

The test dataset includes 20,982 droplets captured of PBMCs from 13 multiplexed individuals.

10x Directories + Other Necessary Files

We have provided this dataset as the complete dataset which is pretty large (~40Gb tar.gz directory). Therefore, we
have also provided the same dataset where the data has been significantly reduced.

Warning: The reduced test dataset may not produce real-world results due to the small size - especially for doublet
detecting softwares since the reads have been significantly downsampled to reduce the size.

You can download the dataset with one of the following commands:

Complete Dataset

Reduced Dataset

First, download the dataset and the md5sum:

wget https://www.dropbox.com/s/3oujqq98y400rzz/TestData4PipelineFull.tar.gz
wget https://www.dropbox.com/s/5n7u723okkf5m3l/TestData4PipelineFull.tar.gz.md5

After downloading the tar.gz directory, it is best to make sure the md5sum of the TestData4PipelineFull.tar.gz
file matches the md5sum in the TestData4PipelineFull.tar.gz.md5:

md5sum TestData4PipelineFull.tar.gz > downloaded_TestData4PipelineFull.tar.gz.md5
diff -s TestData4PipelineFull.tar.gz.md5 downloaded_TestData4PipelineFull.tar.gz.md5

That should return the following statement indicating that the two md5sums are identical:

Files TestData4PipelineFull.tar.gz.md5 and downloaded_TestData4PipelineFull.tar.gz.md5␣
→˓are identical

First, download the reduced dataset and the md5sum:

wget https://www.dropbox.com/s/m8u61jn4i1mcktp/TestData4PipelineSmall.tar.gz
wget https://www.dropbox.com/s/ykjg86q3xw39wqr/TestData4PipelineSmall.tar.gz.md5

After downloading the tar.gz directory, it is best to make sure the md5sum of the TestData4PipelineSmall.tar.gz
file matches the md5sum in the TestData4PipelineSmall.tar.gz.md5:

md5sum TestData4PipelineSmall.tar.gz > downloaded_TestData4PipelineSmall.tar.gz.md5
diff -s TestData4PipelineSmall.tar.gz.md5 downloaded_TestData4PipelineSmall.tar.gz.md5

2.5. Data Preparation 11

Demuxafy, Release 0.0.3

That should return the following statement indicating that the two md5sums are identical:

Files TestData4PipelineSmall.tar.gz.md5 and downloaded_TestData4PipelineSmall.tar.gz.md5␣
→˓are identical

Seurat Object

We have also provided a filtered, QC normalized Seurat object (needed for DoubletFinder and DoubletDecon)

Download the rds object and the md5sum:

wget https://www.dropbox.com/s/po4gy2j3eqohhjv/TestData_Seurat.rds
wget https://www.dropbox.com/s/rmix7tt9aw28n7i/TestData_Seurat.rds.md5

After downloading the rds.object, it is best to make sure the md5sum of the TestData_Seurat.rds file matches the
md5sum in the TestData_Seurat.rds.md5:

md5sum TestData_Seurat.rds > downloaded_TestData_Seurat.rds.md5
diff -s TestData_Seurat.rds.md5 downloaded_TestData_Seurat.rds.md5

That should return the following statement indicating that the two md5sums are identical:

Files TestData_Seurat.rds.md5 and downloaded_TestData_Seurat.rds.md5 are identical

Note: We have used this dataset for each of the tutorials. The example tables in the Results and Interpretation sections
of each tutorial are the results from this dataset.

2.6 Considerations for Other Single Cell Data Types

This workflow was designed for demultiplexing and detecting doublets in scRNA-seq data. However, additional data
types are becoming more frequently used - i.e. snRNA-seq, snATAC-seq and dual snRNA-seq + scATAC-seq. Based on
our experiences with this data we have some recommendations and considerations to take into account when applying
demultiplexing and doublet detecting softwares to these data types.

2.6.1 snRNA-seq

Demultiplexing Softwares

We have not tested any demultiplexing softwares on snRNA-seq data in our hands but we anticipate that it should
behave similarly to scRNA-seq. The only difference we would suggest is to filter SNPs overlapping genes instead of
just overlapping exons. If you are running in to any issues or would like a discussion about use of demultiplexing
softwares on snRNA-seq data, please feel free to reach out.

12 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

Doublet Detecting Softwares

We have not tested doublet detecting softwares on snRNA-seq data but the softwares should work similarly as they
do on scRNA-seq data. If you are running in to any issues or would like a discussion about use of doublet detecting
softwares on snRNA-seq data, please feel free to reach out.

2.6.2 snATAC-seq

Demultiplexing Softwares

Demultiplexing snATAC-seq data can be done with the current demultiplexing softwares. However, we note that it
is much more memory and time consumptive than scRNA-seq. Additionally, the SNPs should be filtered by SNPs
overlapping peak locations instead of exon or gene locations. You may even want to filter the SNPs further if you still
have many after filtering on minor allele frequency and peak location. We typically aim for ~250,000 SNP. Regardless,
since UMI tags aren’t used for snATAC-seq data, demultiplexing can take a lot of memory and time.

In addition, the following flags are required for each of the following softwares to effectively process snATAC-seq data.

Souporcell

• --no_umi True

Doublet Detecting Softwares

Technically, doublet detecting softwares cannot be applied to snATAC-seq data as they rely on the unique transcriptomes
of each cell type to identify heterotypic doublets. However, if snATAC-seq peaks can be made into a scRNA-seq-like
matrices (i.e. by linking peaks to genes or some other method), the doublet detecting softwares outlined in this workflow
could be applied to snATAC-seq data. This has been shown previously by SnapATAC and ArchR has a method built
in that uses a very similar method to Scrublet. AMULET is another doublet detecting method that has been developed
specifically for snATAC-seq data.

2.6.3 Combined snRNA-seq + snATAC-seq

Demultiplexing Softwares

We have noticed a higher percentage of ambient RNA from our combined snRNA-seq + scATAC-seq experiments as
compared to our scRNA-seq (we haven’t tested multiplexed snRNA-seq in our hands) but similar snATAC-seq ambient
DNA estimations as detected with Souporcell Therefore, we recommend running Souporcell, if only to estimate the
ambient RNA in your multiplexed pool. If you are doing the demultiplexing with the snRNA-seq results, please see
the snRNA-seq Section. If you are using the snATAC-seq data for demultiplexing, please see the snATAC-seq Section.

Doublet Detecting Softwares

Doublet detecting softwares for the combined snRNA-seq + snATAC-seq should work similarly to the doublet detecting
softwares for each assay separately (snRNA-seq and snATAC-seq). However, as noted int the Demultiplexing Softwares
Section above, we have observed much higher ambient RNA percentages than for either assay run separately. ..Our
results (CITATION) indicate that increased ambient RNA showed a slight decrease in the MCC and balanced accuracy.
However, we did not simulate up to the level of ambient RNA percent that we have observed using this assay.

2.6. Considerations for Other Single Cell Data Types 13

https://www.nature.com/articles/s41467-021-21583-9
https://www.nature.com/articles/s41467-021-21583-9
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02469-x

Demuxafy, Release 0.0.3

2.7 Notes About Singularity Images

Singularity images effectively store an operating system with files, softwares etc. that can be easily transported across
different operating systems - ensuring reproducibility. Most HPCs have singularity installed making it easy to imple-
ment. There are some tips and tricks we have identified through using singularity images that we thought might help
new users.

2.7.1 Tips and Tricks

1. Error: File Not Found

Reason

Singularity only loads the directories directly downstream from where you execute the singularity com-
mand. If any of the files that need to be accessed by the command are not downstream of the that location,
you will receive an error similar to this one:

Failed to open file "/path/to/readfile.tsv" : No such file or directory

If you then check for that file:

ll /path/to/readfile.tsv

We can see that the file does truly exist:

-rw-rw-r-- 1 user group 70636291 Dec 21 2020 /path/to/readfile.tsv

Solution

The easiest solution to this problem is to “bind” a path upstream of all the files that will need to be accessed
by your command:

singularity exec --bind /path Demuxafy.sif ...

If you don’t have access to Singularity on your HPC, you can ask your HPC administrators to install it (see the Singularity
page)

2.8 Contact

Demuxafy has been developed by Drew Neavin in Joseph Powell’s Lab at the Garvan Institute of Medical Research.

You can contact us with questions, issues or recommendations with a Github issue.

If you use this resource, please cite our publication (REFERENCE).

14 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://sylabs.io/guides/3.0/user-guide/quick_start.html
https://sylabs.io/guides/3.0/user-guide/quick_start.html
https://github.com/drneavin/Demultiplexing_Doublet_Detecting_Docs/issues

Demuxafy, Release 0.0.3

2.9 Overview of Demultiplexing Softwares

Demultiplexing softwares use the inherent genetic differences between donors multiplexed in a single pool to assign
droplets to each donor and to identify doublets. There are five demultiplexing softwares that have different capabil-
ities and advantages depending on your dataset. As you can see from this table, only Demuxlet absolutely requires
reference SNP genotypes for the donors multiplexed in your pool. However, Souporcell and Vireo are also capable of
accomodating reference SNP genotypes as well.

Demultiplexing Soft-
ware Requires Reference

SNP Genotypes
Can Use Reference

SNP Genotypes
Estimates Ambient

RNA

Demuxlet
XXX XXX ×××

Femuxlet ××× ××× ×××

scSplit ××× ××× ×××

Souporcell ××× XXX XXX

Vireo ××× XXX ×××

We highly recommend using Souporcell if only to estimate the percentage of ambient RNA in your pool. As far as we
are aware, this is the only software that leverages SNP genotype data to estimate ambient RNA in multiplexed pools
and it is helpful to identify high ambient RNA which is sometimes undetectable with basic QC metrics. We view this
as supplementary to other ambient RNA methods that use the transcriptional profile to estimate and remove ambient
RNA per droplet.

If you don’t know which demultiplexing software(s) to run, take a look at our Software Selection Recommendations
based on your dataset or use our add widget link here

2.10 Demuxlet

Demuxlet is a genotype demultiplexing software that requires reference genotypes to be available for each individual
in the pool. Therefore, if you don’t have reference genotypes, you may want to demultiplex with one of the softwares
that do not require reference genotype data (Freemuxlet, scSplit, Souporcell or Vireo)

2.10.1 Data

This is the data that you will need to have prepare to run Demuxlet:

Required

• Reference SNP genotypes for each individual ($VCF)

– Filter for common SNPs (> 5% minor allele frequency) and SNPs overlapping genes

2.9. Overview of Demultiplexing Softwares 15

https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

– Demuxlet is very sensitive to missing data in a vcf so please make sure you only have complete cases in
your reference donor SNP genotype file

• Genotype field in $VCF ($FIELD)

– This is GP by default but could also be GT others

• Barcode file ($BARCODES)

• Bam file ($BAM)

– Aligned single cell reads

• Output directory ($DEMUXLET_OUTDIR)

Optional

• A text file with the individual ids ($INDS)

– File containing the individual ids (separated by line) as they appear in the vcf file

– For example, this is the individual file for our example dataset

2.10.2 Run Demuxlet

Popscle Pileup

First we will need to identify the number of reads from each allele at each SNP location:

With $INDS file

Without $INDS file

The $INDS file allows demuxlet to only consider the individual in this pool

singularity exec Demuxafy.sif popscle dsc-pileup --sam $BAM --vcf $VCF --group-list
→˓$BARCODES --out $DEMUXLET_OUTDIR/pileup --sm-list $INDS

This will use all the individuals in your reference SNP genotype $VCF. If your $VCF only has the individuals multiplexed
in your pool, then the $INDS file is not required.

singularity exec Demuxafy.sif popscle dsc-pileup --sam $BAM --vcf $VCF --group-list
→˓$BARCODES --out $DEMUXLET_OUTDIR/pileup

If the pileup is successful, you will have these files in your $DEMUXLET_OUTDIR:

.
pileup.cel.gz
pileup.plp.gz
pileup.umi.gz
pileup.var.gz

Additional details about outputs are available below in the Demuxlet Results and Interpretation.

16 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

Popscle Demuxlet

Once you have run popscle pileup, you can demultiplex your samples:

With $INDS file

Without $INDS file

The $INDS file allows demuxlet to only consider the individual in this pool

singularity exec Demuxafy.sif popscle demuxlet --plp $DEMUXLET_OUTDIR/pileup --vcf $VCF -
→˓-field $FIELD --group-list $BARCODES --geno-error-coeff 1.0 --geno-error-offset 0.05 --
→˓out $DEMUXLET_OUTDIR/demuxlet --sm-list $INDS

This will use all the individuals in your reference SNP genotype $VCF. If your $VCF only has the individuals multiplexed
in your pool, then the $INDS file is not required.

singularity exec Demuxafy.sif popscle demuxlet --plp $DEMUXLET_OUTDIR/pileup --vcf $VCF -
→˓-field $FIELD --group-list $BARCODES --geno-error-coeff 1.0 --geno-error-offset 0.05 --
→˓out $DEMUXLET_OUTDIR/demuxlet

Note

Demuxlet by default assumes that your $VCF uses R2 to indicate the imputation score. If you have a different imputation
metric (INFO is also commonly used), then you should use --r2-info to indicate the metric it should use (for example:
--r2-info INFO)

If demuxlet is successful, you will have these new files in your $DEMUXLET_OUTDIR:

.
demuxlet.best
pileup.cel.gz
pileup.plp.gz
pileup.umi.gz
pileup.var.gz

Additional details about outputs are available below in the Demuxlet Results and Interpretation.

Demuxlet Summary

We have provided a script that will summarize the number of droplets classified as doublets, ambiguous and assigned
to each donor by Demuxlet and write it to the $DEMUXLET_OUTDIR. You can run this to get a fast and easy summary
of your results by providing the path to your result file:

singularity exec Demuxafy.sif bash Demuxlet_summary.sh $DEMUXLET_OUTDIR/demuxlet.best

which will return:

2.10. Demuxlet 17

https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

Classification Assignment N
113_113 1334
349_350 1458
352_353 1607
39_39 1297
40_40 1078
41_41 1127
42_42 1419
43_43 1553
465_466 1094
596_597 1255
597_598 1517
632_633 868
633_634 960
660_661 1362
doublet 3053

or you can write it straight to a file:

singularity exec Demuxafy.sif bash Demuxlet_summary.sh $DEMUXLET_OUTDIR/demuxlet.best >
→˓$DEMUXLET_OUTDIR/demuxlet_summary.tsv

Note

To check if these numbers are consistent with the expected doublet rate in your dataset, you can use our Doublet
Estimation Calculator.

2.10.3 Demuxlet Results and Interpretation

After running the Demuxlet steps and summarizing the results, you will have a number of files from some of the
intermediary steps. These are the files that most users will find the most informative:

• demuxlet.best

– Metrics for each droplet including the singlet, doublet or ambiguous assignment (DROPLET.TYPE), final
assignment (BEST.GUESS), log likelihood of the final assignment (BEST.LLK) and other QC metrics.

INT_IDBAR-
CODE

NUM.SNPSNUM.READSDROPLET.TYPEBEST.GUESSBEST.LLKNEXT.GUESSNEXT.LLKDIFF.LLK.BEST.NEXTBEST.POSTERIORSNG.POSTERIORSNG.BEST.GUESSSNG.BEST.LLKSNG.NEXT.GUESSSNG.NEXT.LLKSNG.ONLY.POSTERIORDBL.BEST.GUESSDBL.BEST.LLKDIFF.LLK.SNG.DBL

0 AAACCTGAGATAGCAT-
1

170 231 SNG41_41,41_41,0.00-
29.42

40_40,41_41,0.50-
39.12

9.70 -
33

1 41_41-
29.42

597_598-
76.24

0.0000040_40,41_41,0.50-
39.12

9.70

1 AAACCTGAGCAGCGTA-
1

325 583 SNG465_466,465_466,0.00-
70.61

42_42,465_466,0.50-
94.85

24.24-
74

1 465_466-
70.61

42_42-
166.61

0.0000042_42,465_466,0.50-
94.85

24.24

2 AAACCTGAGCGATGAC-
1

147 227 SNG113_113,113_113,0.00-
25.05

39_39,113_113,0.50-
29.85

4.80 -
28

1 113_113-
25.05

349_350-
51.63

0.0000039_39,113_113,0.50-
29.85

4.80

3 AAACCTGAGCGTAGTG-
1

180 235 SNG349_350,349_350,0.00-
33.14

349_350,632_633,0.50-
44.78

11.64-
36

1 349_350-
33.14

632_633-
77.41

0.00000349_350,632_633,0.50-
44.78

11.64

4 AAACCTGAGGAGTTTA-
1

248 444 SNG632_633,632_633,0.00-
54.79

352_353,632_633,0.50-
72.23

17.43-
58

1 632_633-
54.79

633_634-
163.24

0.00000352_353,632_633,0.50-
72.23

17.43

. .

18 Chapter 2. Demultiplexing and Doublet Detecting Summary

test.html
test.html
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

2.10.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.10.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as Demuxlet.

2.11 Freemuxlet

Freemuxlet is a genotype-free demultiplexing software that does not require you to have SNP genotypes the donors in
your multiplexed capture. In fact, it can’t natively integrate SNP genotypes into the demultiplexing. We have provided
some scripts that will help identify clusters from given donors if you do have SNP genotypes but use Freemuxlet.
However, it might be better to use a software that is designed integrate SNP genotypes while assigning donor/cluster
(Demuxlet, Souporcell or Vireo).

2.11.1 Data

This is the data that you will need to have prepare to run Freemuxlet:

Required

• Common SNP genotypes vcf ($VCF)

– While not exactly required, using common SNP genotype locations enhances accuracy

∗ If you have reference SNP genotypes for individuals in your pool, you can use those

∗ If you do not have reference SNP genotypes, they can be from any large population resource (i.e. 1000
Genomes or HRC)

– Filter for common SNPs (> 5% minor allele frequency) and SNPs overlapping genes

• Barcode file ($BARCODES)

• Number of samples in pool ($N)

• Bam file ($BAM)

– Aligned single cell reads

• Output directory ($FREEMUXLET_OUTDIR)

2.11. Freemuxlet 19

https://www.nature.com/articles/nbt.4042
https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

2.11.2 Run Freemuxlet

Popscle Pileup

First we will need to identify the number of reads from each allele at each of the common SNP location:

singularity exec Demuxafy.sif popscle dsc-pileup --sam $BAM --vcf $VCF --group-list
→˓$BARCODES --out $FREEMUXLET_OUTDIR/pileup

If the pileup is successfull, you will have these files in your $FREEMUXLET_OUTDIR:

.
pileup.cel.gz
pileup.plp.gz
pileup.umi.gz
pileup.var.gz

Additional details about outputs are available below in the Freemuxlet Results and Interpretation.

Popscle Freemuxlet

Once you have run popscle pileup, you can demultiplex your samples with Freemuxlet:

singularity exec Demuxafy.sif popscle freemuxlet --plp $FREEMUXLET_OUTDIR/pileup --out
→˓$FREEMUXLET_OUTDIR/freemuxlet --group-list $BARCODES --nsample $N

If freemuxlet is successfull, you will have these new files in your $FREEMUXLET_OUTDIR:

.
freemuxlet.clust1.samples.gz
freemuxlet.clust1.vcf.gz
freemuxlet.lmix
pileup.cel.gz
pileup.plp.gz
pileup.umi.gz
pileup.var.gz

Additional details about outputs are available below in the Freemuxlet Results and Interpretation.

Freemuxlet Summary

We have provided a script that will summarize the number of droplets classified as doublets, ambiguous and assigned to
each donor by Freemuxlet and write it to the $FREEMUXLET_OUTDIR. You can run this to get a fast and easy summary
of your results by providing the result file of interest:

singularity exec Demuxafy.sif bash Freemuxlet_summary.sh $FREEMUXLET_OUTDIR/freemuxlet.
→˓clust1.samples.gz

which will return:

20 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

Classification Assignment N
0 1575
1 1278
10 972
11 1477
12 1630
13 1446
2 1101
3 1150
4 1356
5 1540
6 1110
7 1313
8 1383
9 884
DBL 2767

or you can write it straight to a file:

singularity exec Demuxafy.sif bash Freemuxlet_summary.sh $FREEMUXLET_OUTDIR/freemuxlet.
→˓clust1.samples.gz > $FREEMUXLET_OUTDIR/freemuxlet_summary.tsv

Note

To check if these numbers are consistent with the expected doublet rate in your dataset, you can use our Doublet
Estimation Calculator.

Correlating Cluster to Donor Reference SNP Genotypes (optional)

If you have reference SNP genotypes for some or all of the donors in your pool, you can identify which cluster is best
correlated with each donor in your reference SNP genotypes. We have provided a script that will do this and provide a
heatmap correlation figure and the predicted individual that should be assigned for each cluster. You can either run it
with the script by providing the reference SNP genotypes ($VCF), the cluster SNP genotypes ($FREEMUXLET_OUTDIR/
freemuxletOUT.clust1.vcf.gz) and the output directory ($FREEMUXLET_OUTDIR) You can run this script with:

Note

In order to do this, your $VCF must be reference SNP genotypes for the individuals in the pool and cannot be a general
vcf with common SNP genotype locations from 1000 Genomes or HRC.

With Script

Run in R

singularity exec Demuxafy.sif Assign_Indiv_by_Geno.R -r $VCF -c $FREEMUXLET_OUTDIR/
→˓freemuxlet.clust1.vcf.gz -o $FREEMUXLET_OUTDIR

To see the parameter help menu, type:

singularity exec Demuxafy.sif Assign_Indiv_by_Geno.R -h

2.11. Freemuxlet 21

test.html
test.html

Demuxafy, Release 0.0.3

Which will print:

usage: Assign_Indiv_by_Geno.R [-h] -r REFERENCE_VCF -c CLUSTER_VCF -o OUTDIR

optional arguments:
-h, --help show this help message and exit
-r REFERENCE_VCF, --reference_vcf REFERENCE_VCF

The output directory where results will␣
→˓be saved
-c CLUSTER_VCF, --cluster_vcf CLUSTER_VCF

A QC, normalized seurat object with
classifications/clusters as Idents().

-o OUTDIR, --outdir OUTDIR
Number of genes to use in
'Improved_Seurat_Pre_Process' function.

You can run the reference vs cluster genotypes manually (possibly because your data doesn’t have GT, DS or GP
genotype formats) or because you would prefer to alter some of the steps. To run the correlations manually, simply
start R from the singularity image:

singularity exec Demuxafy.sif R

Once, R has started, you can load the required libraries (included in the singularity image) and run the code.

.libPaths("/usr/local/lib/R/site-library") ### Required so that libraries are loaded␣
→˓from the image instead of locally
library(tidyr)
library(tidyverse)
library(dplyr)
library(vcfR)
library(lsa)
library(ComplexHeatmap)

########## Set up paths and variables ##########

reference_vcf <- "/path/to/reference.vcf"
cluster_vcf <- "/path/to/freemuxlet/out/freemuxletOUT.clust1.vcf.gz"
outdir <- "/path/to/freemuxlet/out/"

########## Set up functions ##########
Calculate DS from GP if genotypes in that format
calculate_DS <- function(GP_df){

columns <- c()
for (i in 1:ncol(GP_df)){

columns <- c(columns, paste0(colnames(GP_df)[i],"-0"), paste0(colnames(GP_df)[i],
→˓"-1"), paste0(colnames(GP_df)[i],"-2"))

}
df <- GP_df
colnames(df) <- paste0("c", colnames(df))
colnames_orig <- colnames(df)
for (i in 1:length(colnames_orig)){

df <- separate(df, sep = ",", col = colnames_orig[i], into = columns[(1+(3*(i-
→˓1))):(3+(3*(i-1)))]) (continues on next page)

22 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

}
df <- mutate_all(df, function(x) as.numeric(as.character(x)))
for (i in 1: ncol(GP_df)){

GP_df[,i] <- df[,(2+((i-1)*3))] + 2* df[,(3+((i-1)*3))]
}
return(GP_df)

}

pearson_correlation <- function(df, ref_df, clust_df){
for (col in colnames(df)){

for (row in rownames(df)){
df[row,col] <- cor(as.numeric(pull(ref_df, col)), as.numeric(pull(clust_df,␣

→˓row)), method = "pearson", use = "complete.obs")
}

}
return(df)

}

########## Read in vcf files for each of three non-reference genotype softwares #########
→˓#
ref_geno <- read.vcfR(reference_vcf)
cluster_geno <- read.vcfR(cluster_vcf)

########## Convert to tidy data frame ##########
####### Identify which genotype FORMAT to use #######
Cluster VCF
Check for each of the different genotype formats
DS
format_clust=NA
cluster_geno_tidy <- as_tibble(extract.gt(element = "DS",cluster_geno, IDtoRowNames = F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
␣
→˓message("Found DS genotype format in cluster vcf. Will use that metric for cluster correlation.")
format_clust = "DS"

}

GT
if (is.na(format_clust)){
cluster_geno_tidy <- as_tibble(extract.gt(element = "GT",cluster_geno, IDtoRowNames =␣

→˓F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
␣

→˓message("Found GT genotype format in cluster vcf. Will use that metric for cluster correlation.")
format_clust = "GT"

if (any(grepl("\\|",cluster_geno_tidy[1,]))){
separator = "|"
message("Detected | separator for GT genotype format in cluster vcf")

} else if (any(grepl("/",cluster_geno_tidy[1,]))) {

(continues on next page)

2.11. Freemuxlet 23

Demuxafy, Release 0.0.3

(continued from previous page)

separator = "/"
message("Detected / separator for GT genotype format in cluster vcf")

} else {
format_clust = NA
␣

→˓message("Can't identify a separator for the GT field in cluster vcf, moving on to using GP.")
}

cluster_geno_tidy <- as_tibble(lapply(cluster_geno_tidy, function(x)
→˓{gsub(paste0("0",separator,"0"),0, x)}) %>%

lapply(., function(x) {gsub(paste0("0",separator,"1"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"0"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"1"),2, x)}
→˓))

}
}

GP
if (is.na(format_clust)){

cluster_geno_tidy <- as_tibble(extract.gt(element = "GP",cluster_geno, IDtoRowNames␣
→˓=F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
format_clust = "GP"
cluster_geno_tidy <- calculate_DS(cluster_geno_tidy)
␣

→˓message("Found GP genotype format in cluster vcf. Will use that metric for cluster correlation.")

} else {
␣

→˓print("Could not identify the expected genotype format fields (DS, GT or GP) in your cluster vcf. Please check the vcf file and make sure that one of the expected genotype format fields is included or run manually with your genotype format field of choice. Quitting")
q()

}
}

Reference VCF
Check for each of the different genotype formats
DS
format_ref = NA
ref_geno_tidy <- as_tibble(extract.gt(element = "DS",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
␣
→˓message("Found DS genotype format in reference vcf. Will use that metric for cluster correlation.")
format_ref = "DS"

}

(continues on next page)

24 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

GT
if (is.na(format_ref)){
ref_geno_tidy <- as_tibble(extract.gt(element = "GT",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
␣

→˓message("Found GT genotype format in reference vcf. Will use that metric for cluster correlation.")
format_ref = "GT"

if (any(grepl("\\|",ref_geno_tidy[1,]))){
separator = "|"
message("Detected | separator for GT genotype format in reference vcf")

} else if (any(grepl("/",ref_geno_tidy[1,]))) {
separator = "/"
message("Detected / separator for GT genotype format in reference vcf")

} else {
format_ref = NA
␣

→˓message("Can't identify a separator for the GT field in reference vcf, moving on to using GP.")
}

ref_geno_tidy <- as_tibble(lapply(ref_geno_tidy, function(x) {gsub(paste0("0",
→˓separator,"0"),0, x)}) %>%

lapply(., function(x) {gsub(paste0("0",separator,"1"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"0"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"1"),2, x)}
→˓))

}
}

GP
if (is.na(format_ref)){

ref_geno_tidy <- as_tibble(extract.gt(element = "GP",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
format_clust = "GP"
ref_geno_tidy <- calculate_DS(ref_geno_tidy)
␣

→˓message("Found GP genotype format in cluster vcf. Will use that metric for cluster correlation.")

} else {
␣

→˓print("Could not identify the expected genotype format fields (DS, GT or GP) in your cluster vcf. Please check the vcf file and make sure that one of the expected genotype format fields is included or run manually with your genotype format field of choice. Quitting")
q()

}
}

Get SNP IDs that will match between reference and cluster
Account for possibility that the ref or alt might be missing

(continues on next page)

2.11. Freemuxlet 25

Demuxafy, Release 0.0.3

(continued from previous page)

if ((all(is.na(cluster_geno@fix[,'REF'])) & all(is.na(cluster_geno@fix[,'ALT']))) |␣
→˓(all(is.na(ref_geno@fix[,'REF'])) & all(is.na(ref_geno@fix[,'ALT'])))){
␣
→˓message("The REF and ALT categories are not provided for the reference and/or the cluster vcf. Will use just the chromosome and position to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'])

} else if (all(is.na(cluster_geno@fix[,'REF'])) | all(is.na(ref_geno@fix[,'REF']))){
␣
→˓message("The REF categories are not provided for the reference and/or the cluster vcf. Will use the chromosome, position and ALT to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'],"_", cluster_geno@fix[,'REF'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'REF'])
} else if (all(is.na(cluster_geno@fix[,'ALT'])) | all(is.na(ref_geno@fix[,'ALT']))){
␣
→˓message("The ALT categories are not provided for the reference and/or the cluster vcf. Will use the chromosome, position and REF to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'],"_", cluster_geno@fix[,'ALT'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'ALT'])
} else {
␣
→˓message("Found REF and ALT in both cluster and reference genotype vcfs. Will use chromosome, position, REF and ALT to match SNPs.")

cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,
→˓'POS'],"_", cluster_geno@fix[,'REF'],"_", cluster_geno@fix[,'ALT'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'REF'],"_", ref_geno@fix[,'ALT'])
}

Update the vcf dfs to remove SNPs with no genotyopes
cluster_geno_tidy <- cluster_geno_tidy[colSums(!is.na(cluster_geno_tidy)) > 0]
ref_geno_tidy <- ref_geno_tidy[colSums(!is.na(ref_geno_tidy)) > 0]

########## Get a unique list of SNPs that is in both the reference and cluster genotypes
→˓##########
locations <- inner_join(ref_geno_tidy[,"ID"],cluster_geno_tidy[,"ID"])
locations <- locations[!(locations$ID %in% locations[duplicated(locations),]$ID),]

########## Keep just the SNPs that overlap ##########
ref_geno_tidy <- left_join(locations, ref_geno_tidy)
cluster_geno_tidy <- left_join(locations, cluster_geno_tidy)

########## Correlate all the cluster genotypes with the individuals genotyped ##########
Make a dataframe that has the clusters as the row names and the individuals as the␣
→˓column names #####
pearson_correlations <- as.data.frame(matrix(nrow = (ncol(cluster_geno_tidy) -1), ncol =␣
→˓(ncol(ref_geno_tidy) -1)))
colnames(pearson_correlations) <- colnames(ref_geno_tidy)[2:(ncol(ref_geno_tidy))]

(continues on next page)

26 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

rownames(pearson_correlations) <- colnames(cluster_geno_tidy)[2:(ncol(cluster_geno_
→˓tidy))]
pearson_correlations <- pearson_correlation(pearson_correlations, ref_geno_tidy, cluster_
→˓geno_tidy)
cluster <- data.frame("Cluster" = rownames(pearson_correlations))
pearson_correlations_out <- cbind(cluster, pearson_correlations)

########## Save the correlation dataframes ##########
write_delim(pearson_correlations_out, file = paste0(outdir,
→˓"/ref_clust_pearson_correlations.tsv"), delim = "\t")

########## Create correlation figures ##########
col_fun = colorRampPalette(c("white", "red"))(101)
pPearsonCorrelations <- Heatmap(as.matrix(pearson_correlations), cluster_rows = T, col =␣
→˓col_fun)

########## Save the correlation figures ##########
png(filename = paste0(outdir,"/ref_clust_pearson_correlation.png"), width = 500)
print(pPearsonCorrelations)
dev.off()

########## Assign individual to cluster based on highest correlating individual #########
→˓#
key <- as.data.frame(matrix(nrow = ncol(pearson_correlations), ncol = 3))
colnames(key) <- c("Genotype_ID","Cluster_ID","Correlation")
key$Genotype_ID <- colnames(pearson_correlations)
for (id in key$Genotype_ID){

if (max(pearson_correlations[,id]) == max(pearson_correlations[rownames(pearson_
→˓correlations)[which.max(pearson_correlations[,id])],])){

key$Cluster_ID[which(key$Genotype_ID == id)] <- rownames(pearson_
→˓correlations)[which.max(pearson_correlations[,id])]

key$Correlation[which(key$Genotype_ID == id)] <- max(pearson_correlations[,id])
} else {

key$Cluster_ID[which(key$Genotype_ID == id)] <- "unassigned"
key$Correlation[which(key$Genotype_ID == id)] <- NA

}
}

write_delim(key, file = paste0(outdir,"/Genotype_ID_key.txt"), delim = "\t")

After correlating the reference SNP genotypes with the cluster SNP genotypes using either the script or manually, you
should have three new files in your $FREEMUXLET_OUTDIR:

.
freemuxlet.clust1.samples.gz
freemuxlet.clust1.vcf.gz
freemuxlet.lmix
freemuxlet_summary.tsv
Genotype_ID_key.txt
pileup.cel.gz
pileup.plp.gz

(continues on next page)

2.11. Freemuxlet 27

Demuxafy, Release 0.0.3

(continued from previous page)

pileup.umi.gz
pileup.var.gz
ref_clust_pearson_correlation.png
ref_clust_pearson_correlations.tsv

2.11.3 Freemuxlet Results and Interpretation

After running the Freemuxlet steps and summarizing the results, you will have a number of files from some of the
intermediary steps. Theses are the files that most users will find the most informative:

• freemuxlet.clust1.samples.gz

– Metrics for each droplet including the singlet, doublet or ambiguous assignment (DROPLET.TYPE), final
assignment (BEST.GUESS), log likelihood of the final assignment (BEST.LLK) and other QC metrics.

INT_IDBAR-
CODE

NUM.SNPSNUM.READSDROPLET.TYPEBEST.GUESSBEST.LLKNEXT.GUESSNEXT.LLKDIFF.LLK.BEST.NEXTBEST.POSTERIORSNG.POSTERIORSNG.BEST.GUESSSNG.BEST.LLKSNG.NEXT.GUESSSNG.NEXT.LLKSNG.ONLY.POSTERIORDBL.BEST.GUESSDBL.BEST.LLKDIFF.LLK.SNG.DBL

0 GTGAAGGTCCGCGTTT-
1

600 1050DBL12,1 -
1001.09

12,4 -
1030.21

29.13-
0.00000

6.7e-
16

12 -
1037.90

1 -
1135.80

1.0000012,1 -
1001.09

-
36.81

1 CGAGAAGTCCTCAACC-
1

354 578 SNG7,7 -
560.30

13,7 -
583.64

23.35-
0.00000

1 7 -
560.30

13 -
650.83

1.0000013,7 -
583.64

23.35

2 CGCTTCATCGGTGTCG-
1

10292847DBL9,3 -
1651.22

9,6 -
1777.52

126.310.000001.5e-
65

9 -
1802.35

3 -
1838.25

1.000009,3 -
1651.22

-
151.13

3 CAGCGACTCGTCGTTC-
1

167 229 SNG5,5 -
261.97

6,5 -
272.51

10.54-
0.00001

1 5 -
261.97

6 -
303.97

1.000006,5 -
272.51

10.54

4 CGTAGGCAGGCCGAAT-
1

287 465 SNG1,1 -
451.79

4,1 -
479.98

28.18-
0.00000

1 1 -
451.79

10 -
562.57

1.000004,1 -
479.98

28.18

. .

If you ran the Assign_Indiv_by_Geno.R script, you will also have the following files:

• Genotype_ID_key.txt

– Key of the cluster and assignments for each individual and the pearson correlation coefficient.

Genotype_ID Cluster_ID Correlation
113_113 CLUST4 0.7939599
349_350 CLUST11 0.7954687
352_353 CLUST12 0.7962697
39_39 CLUST7 0.7927807
40_40 CLUST6 0.7833879
41_41 CLUST3 0.7877763
42_42 CLUST13 0.7915233
43_43 CLUST0 0.8008066
465_466 CLUST2 0.7849719
596_597 CLUST1 0.7883125
597_598 CLUST5 0.7996224
632_633 CLUST9 0.7904012
633_634 CLUST10 0.7834359
660_661 CLUST8 0.7914850

• ref_clust_pearson_correlation.png

28 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

– Figure of the pearson correlation coefficients for each cluster-individual pair.

• ref_clust_pearson_correlations.tsv

– All of the pearson correlation coefficients between the clusters and the individuals

Clus-
ter

113_113 349_350 352_353 39_39 40_40 . . .

0 0.67101381550152870.66707724178451690.66624375468863750.6597059348730830.661561196478371. . .
1 0.67683245041121750.66980412452211650.67533657948341550.67461025934365710.670220232713515. . .
2 0.680371000427 0.67566064136291370.67648693298879580.67426005752802240.6712474637813011. . .
3 0.6782452606023950.67290133678757290.67736366264886720.67197934802696760.6672767277830997. . .
4 0.79395986048620430.67147456978777560.67139099260317490.6730640581876810.6702690169292862. . .
. .

2.11. Freemuxlet 29

Demuxafy, Release 0.0.3

2.11.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.11.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as Freemuxlet.

2.12 ScSplit

ScSplit is a reference-free demultiplexing software. If you have reference SNP genotypes, it would be better to use a
demultiplexing software that can handle reference SNP genotypes (Demuxlet, Souporcell or Vireo)

2.12.1 Data

This is the data that you will need to have prepared to run ScSplit:

Required

• Bam file ($BAM)

– Aligned single cell reads

• Genome reference fasta file ($FASTA)

• Barcode file ($BARCODES)

• Common SNP genotypes vcf ($VCF)

– While not exactly required, using common SNP genotype locations enhances accuracy

∗ If you have reference SNP genotypes for individuals in your pool, you can use those

∗ If you do not have reference SNP genotypes, they can be from any large population resource (i.e. 1000
Genomes or HRC)

– Filter for common SNPs (> 5% minor allele frequency) and SNPs overlapping genes

• Number of samples in pool ($N)

• Output directory ($SCSPLIT_OUTDIR)

2.12.2 Run ScSplit

Prepare Bam file

First, you will need to prepare the bam file so that it only contains high quality, primarily mapped reads without any
PCR duplicated reads.

30 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/statgen/popscle
https://github.com/jon-xu/scSplit
https://github.com/jon-xu/scSplit

Demuxafy, Release 0.0.3

singularity exec Demuxafy.sif samtools view -b -S -q 10 -F 3844 $BAM > $SCSPLIT_OUTDIR/
→˓filtered_bam.bam
singularity exec Demuxafy.sif samtools rmdup $SCSPLIT_OUTDIR/filtered_bam.bam $SCSPLIT_
→˓OUTDIR/filtered_bam_dedup.bam
singularity exec Demuxafy.sif samtools sort -o $SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.
→˓bam $SCSPLIT_OUTDIR/filtered_bam_dedup.bam
singularity exec Demuxafy.sif samtools index $SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.
→˓bam

After running these bam preparation steps, you will have the following files in your $SCSPLIT_OUTDIR:

.
filtered_bam.bam
filtered_bam_dedup.bam
filtered_bam_dedup_sorted.bam
filtered_bam_dedup_sorted.bam.bai

Call Sample SNVs

Next, you will need to identify SNV genotypes in the pooled bam.

singularity exec Demuxafy.sif freebayes -f $FASTA -iXu -C 2 -q 1 $SCSPLIT_OUTDIR/
→˓filtered_bam_dedup_sorted.bam > $SCSPLIT_OUTDIR/freebayes_var.vcf
singularity exec Demuxafy.sif vcftools --gzvcf $SCSPLIT_OUTDIR/freebayes_var.vcf --minQ␣
→˓30 --recode --recode-INFO-all --out $SCSPLIT_OUTDIR/freebayes_var_qual30

After running these SNV calling steps, you will have the following new files in your $SCSPLIT_OUTDIR:

.
filtered_bam.bam
filtered_bam_dedup.bam
filtered_bam_dedup_sorted.bam
filtered_bam_dedup_sorted.bam.bai
freebayes_var_qual30.log
freebayes_var_qual30.recode.vcf
freebayes_var.vcf

Demultiplex with ScSplit

The prepared SNV genotypes and bam file can then be used to demultiplex and call genotypes in each cluster.

singularity exec Demuxafy.sif scSplit count -c $VCF -v $SCSPLIT_OUTDIR/freebayes_var_
→˓qual30.recode.vcf -i $SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam -b $BARCODES -r
→˓$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filtered.csv -o $SCSPLIT_OUTDIR
singularity exec Demuxafy.sif scSplit run -r $SCSPLIT_OUTDIR/ref_filtered.csv -a
→˓$SCSPLIT_OUTDIR/alt_filtered.csv -n $N -o $SCSPLIT_OUTDIR
singularity exec Demuxafy.sif scSplit genotype -r $SCSPLIT_OUTDIR/ref_filtered.csv -a
→˓$SCSPLIT_OUTDIR/alt_filtered.csv -p $SCSPLIT_OUTDIR/scSplit_P_s_c.csv -o $SCSPLIT_
→˓OUTDIR

After running these demultiplexing steps, you will have the following new results:

2.12. ScSplit 31

Demuxafy, Release 0.0.3

.
alt_filtered.csv
filtered_bam.bam
filtered_bam_dedup.bam
filtered_bam_dedup_sorted.bam
filtered_bam_dedup_sorted.bam.bai
freebayes_var_qual30.log
freebayes_var_qual30.recode.vcf
freebayes_var.vcf
ref_filtered.csv
scSplit_dist_matrix.csv
scSplit_dist_variants.txt
scSplit.log
scSplit_PA_matrix.csv
scSplit_P_s_c.csv
scSplit_result.csv
scSplit.vcf

Additional details about outputs are available below in the Demuxlet Results and Interpretation.

ScSplit Summary

We have provided a script that will provide a summary of the number of droplets classified as doublets, ambiguous
and assigned to each cluster by ScSplit. You can run this to get a fast and easy summary of your results. Just pass the
ScSplit result file:

singularity exec Demuxafy.sif bash scSplit_summary.sh $SCSPLIT_OUTDIR/scSplit_result.csv

which will return the following summary:

Classification Assignment N
DBL 1055
SNG-0 1116
SNG-10 1654
SNG-11 1207
SNG-12 1564
SNG-13 1428
SNG-14 1640
SNG-2 514
SNG-3 1314
SNG-4 1587
SNG-5 1774
SNG-6 1484
SNG-7 1662
SNG-8 1578
SNG-9 1282

You can save the summary to file pointing it to the desired output file:

singularity exec Demuxafy.sif bash scSplit_summary.sh $SCSPLIT_OUTDIR/scSplit_result.csv␣
→˓> $SCSPLIT_OUTDIR/scSplit_summary.tsv

32 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/jon-xu/scSplit
https://github.com/jon-xu/scSplit

Demuxafy, Release 0.0.3

Note

To check if these numbers are consistent with the expected doublet rate in your dataset, you can use our Doublet
Estimation Calculator.

Correlating Cluster to Donor Reference SNP Genotypes (optional)

If you have reference SNP genotypes for some or all of the donors in your pool, you can identify which cluster is best
correlated with each donor in your reference SNP genotypes. We have provided a script that will do this and provide
a heatmap correlation figure and the predicted individual that should be assigned for each cluster. You can either run
it with the script by providing the reference SNP genotypes ($VCF), the cluster SNP genotypes ($SCSPLIT_OUTDIR/
scSplit.vcf) and the output directory ($SCSPLIT_OUTDIR) You can run this script with:

Note

In order to do this, your $VCF must be reference SNP genotypes for the individuals in the pool and cannot be a general
vcf with common SNP genotype locations from 1000 Genomes or HRC.

With Script

Run in R

singularity exec Demuxafy.sif Assign_Indiv_by_Geno.R -r $VCF -c $SCSPLIT_OUTDIR/scSplit.
→˓vcf -o $SCSPLIT_OUTDIR

To see the parameter help menu, type:

singularity exec Demuxafy.sif Assign_Indiv_by_Geno.R -h

Which will print:

usage: Assign_Indiv_by_Geno.R [-h] -r REFERENCE_VCF -c CLUSTER_VCF -o OUTDIR

optional arguments:
-h, --help show this help message and exit
-r REFERENCE_VCF, --reference_vcf REFERENCE_VCF

The output directory where results will␣
→˓be saved
-c CLUSTER_VCF, --cluster_vcf CLUSTER_VCF

A QC, normalized seurat object with
classifications/clusters as Idents().

-o OUTDIR, --outdir OUTDIR
Number of genes to use in
'Improved_Seurat_Pre_Process' function.

You can run the reference vs cluster genotypes manually (possibly because your data doesn’t have GT, DS or GP
genotype formats) or because you would prefer to alter some of the steps. To run the correlations manually, simply
start R from the singularity image:

singularity exec Demuxafy.sif R

Once, R has started, you can load the required libraries (included in the singularity image) and run the code.

2.12. ScSplit 33

test.html
test.html

Demuxafy, Release 0.0.3

.libPaths("/usr/local/lib/R/site-library") ### Required so that libraries are loaded␣
→˓from the image instead of locally
library(tidyr)
library(tidyverse)
library(dplyr)
library(vcfR)
library(lsa)
library(ComplexHeatmap)

########## Set up paths and variables ##########

reference_vcf <- "/path/to/reference.vcf"
cluster_vcf <- "/path/to/scSplit/out/scSplit.vcf"
outdir <- "/path/to/scSplit/out/"

########## Set up functions ##########
Calculate DS from GP if genotypes in that format
calculate_DS <- function(GP_df){

columns <- c()
for (i in 1:ncol(GP_df)){

columns <- c(columns, paste0(colnames(GP_df)[i],"-0"), paste0(colnames(GP_df)[i],
→˓"-1"), paste0(colnames(GP_df)[i],"-2"))

}
df <- GP_df
colnames(df) <- paste0("c", colnames(df))
colnames_orig <- colnames(df)
for (i in 1:length(colnames_orig)){

df <- separate(df, sep = ",", col = colnames_orig[i], into = columns[(1+(3*(i-
→˓1))):(3+(3*(i-1)))])

}
df <- mutate_all(df, function(x) as.numeric(as.character(x)))
for (i in 1: ncol(GP_df)){

GP_df[,i] <- df[,(2+((i-1)*3))] + 2* df[,(3+((i-1)*3))]
}
return(GP_df)

}

pearson_correlation <- function(df, ref_df, clust_df){
for (col in colnames(df)){

for (row in rownames(df)){
df[row,col] <- cor(as.numeric(pull(ref_df, col)), as.numeric(pull(clust_df,␣

→˓row)), method = "pearson", use = "complete.obs")
}

}
return(df)

}

########## Read in vcf files for each of three non-reference genotype softwares #########
→˓#
ref_geno <- read.vcfR(reference_vcf)

(continues on next page)

34 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

cluster_geno <- read.vcfR(cluster_vcf)

########## Convert to tidy data frame ##########
####### Identify which genotype FORMAT to use #######
Cluster VCF
Check for each of the different genotype formats
DS
format_clust=NA
cluster_geno_tidy <- as_tibble(extract.gt(element = "DS",cluster_geno, IDtoRowNames = F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
␣
→˓message("Found DS genotype format in cluster vcf. Will use that metric for cluster correlation.")
format_clust = "DS"

}

GT
if (is.na(format_clust)){
cluster_geno_tidy <- as_tibble(extract.gt(element = "GT",cluster_geno, IDtoRowNames =␣

→˓F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
␣

→˓message("Found GT genotype format in cluster vcf. Will use that metric for cluster correlation.")
format_clust = "GT"

if (any(grepl("\\|",cluster_geno_tidy[1,]))){
separator = "|"
message("Detected | separator for GT genotype format in cluster vcf")

} else if (any(grepl("/",cluster_geno_tidy[1,]))) {
separator = "/"
message("Detected / separator for GT genotype format in cluster vcf")

} else {
format_clust = NA
␣

→˓message("Can't identify a separator for the GT field in cluster vcf, moving on to using GP.")
}

cluster_geno_tidy <- as_tibble(lapply(cluster_geno_tidy, function(x)
→˓{gsub(paste0("0",separator,"0"),0, x)}) %>%

lapply(., function(x) {gsub(paste0("0",separator,"1"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"0"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"1"),2, x)}
→˓))

}
}

GP
if (is.na(format_clust)){

(continues on next page)

2.12. ScSplit 35

Demuxafy, Release 0.0.3

(continued from previous page)

cluster_geno_tidy <- as_tibble(extract.gt(element = "GP",cluster_geno, IDtoRowNames␣
→˓=F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
format_clust = "GP"
cluster_geno_tidy <- calculate_DS(cluster_geno_tidy)
␣

→˓message("Found GP genotype format in cluster vcf. Will use that metric for cluster correlation.")

} else {
␣

→˓print("Could not identify the expected genotype format fields (DS, GT or GP) in your cluster vcf. Please check the vcf file and make sure that one of the expected genotype format fields is included or run manually with your genotype format field of choice. Quitting")
q()

}
}

Reference VCF
Check for each of the different genotype formats
DS
format_ref = NA
ref_geno_tidy <- as_tibble(extract.gt(element = "DS",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
␣
→˓message("Found DS genotype format in reference vcf. Will use that metric for cluster correlation.")
format_ref = "DS"

}

GT
if (is.na(format_ref)){

ref_geno_tidy <- as_tibble(extract.gt(element = "GT",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
␣

→˓message("Found GT genotype format in reference vcf. Will use that metric for cluster correlation.")
format_ref = "GT"

if (any(grepl("\\|",ref_geno_tidy[1,]))){
separator = "|"
message("Detected | separator for GT genotype format in reference vcf")

} else if (any(grepl("/",ref_geno_tidy[1,]))) {
separator = "/"
message("Detected / separator for GT genotype format in reference vcf")

} else {
format_ref = NA
␣

→˓message("Can't identify a separator for the GT field in reference vcf, moving on to using GP.")
}

ref_geno_tidy <- as_tibble(lapply(ref_geno_tidy, function(x) {gsub(paste0("0",
→˓separator,"0"),0, x)}) %>%

(continues on next page)

36 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

lapply(., function(x) {gsub(paste0("0",separator,"1"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"0"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"1"),2, x)}
→˓))

}
}

GP
if (is.na(format_ref)){

ref_geno_tidy <- as_tibble(extract.gt(element = "GP",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
format_clust = "GP"
ref_geno_tidy <- calculate_DS(ref_geno_tidy)
␣

→˓message("Found GP genotype format in cluster vcf. Will use that metric for cluster correlation.")

} else {
␣

→˓print("Could not identify the expected genotype format fields (DS, GT or GP) in your cluster vcf. Please check the vcf file and make sure that one of the expected genotype format fields is included or run manually with your genotype format field of choice. Quitting")
q()

}
}

Get SNP IDs that will match between reference and cluster
Account for possibility that the ref or alt might be missing
if ((all(is.na(cluster_geno@fix[,'REF'])) & all(is.na(cluster_geno@fix[,'ALT']))) |␣
→˓(all(is.na(ref_geno@fix[,'REF'])) & all(is.na(ref_geno@fix[,'ALT'])))){
␣
→˓message("The REF and ALT categories are not provided for the reference and/or the cluster vcf. Will use just the chromosome and position to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'])

} else if (all(is.na(cluster_geno@fix[,'REF'])) | all(is.na(ref_geno@fix[,'REF']))){
␣
→˓message("The REF categories are not provided for the reference and/or the cluster vcf. Will use the chromosome, position and ALT to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'],"_", cluster_geno@fix[,'REF'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'REF'])
} else if (all(is.na(cluster_geno@fix[,'ALT'])) | all(is.na(ref_geno@fix[,'ALT']))){
␣
→˓message("The ALT categories are not provided for the reference and/or the cluster vcf. Will use the chromosome, position and REF to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'],"_", cluster_geno@fix[,'ALT'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'ALT'])
} else {

(continues on next page)

2.12. ScSplit 37

Demuxafy, Release 0.0.3

(continued from previous page)

␣
→˓message("Found REF and ALT in both cluster and reference genotype vcfs. Will use chromosome, position, REF and ALT to match SNPs.")

cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,
→˓'POS'],"_", cluster_geno@fix[,'REF'],"_", cluster_geno@fix[,'ALT'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'REF'],"_", ref_geno@fix[,'ALT'])
}

Update the vcf dfs to remove SNPs with no genotyopes
cluster_geno_tidy <- cluster_geno_tidy[colSums(!is.na(cluster_geno_tidy)) > 0]
ref_geno_tidy <- ref_geno_tidy[colSums(!is.na(ref_geno_tidy)) > 0]

########## Get a unique list of SNPs that is in both the reference and cluster genotypes
→˓##########
locations <- inner_join(ref_geno_tidy[,"ID"],cluster_geno_tidy[,"ID"])
locations <- locations[!(locations$ID %in% locations[duplicated(locations),]$ID),]

########## Keep just the SNPs that overlap ##########
ref_geno_tidy <- left_join(locations, ref_geno_tidy)
cluster_geno_tidy <- left_join(locations, cluster_geno_tidy)

########## Correlate all the cluster genotypes with the individuals genotyped ##########
Make a dataframe that has the clusters as the row names and the individuals as the␣
→˓column names #####
pearson_correlations <- as.data.frame(matrix(nrow = (ncol(cluster_geno_tidy) -1), ncol =␣
→˓(ncol(ref_geno_tidy) -1)))
colnames(pearson_correlations) <- colnames(ref_geno_tidy)[2:(ncol(ref_geno_tidy))]
rownames(pearson_correlations) <- colnames(cluster_geno_tidy)[2:(ncol(cluster_geno_
→˓tidy))]
pearson_correlations <- pearson_correlation(pearson_correlations, ref_geno_tidy, cluster_
→˓geno_tidy)
cluster <- data.frame("Cluster" = rownames(pearson_correlations))
pearson_correlations_out <- cbind(cluster, pearson_correlations)

########## Save the correlation dataframes ##########
write_delim(pearson_correlations_out, file = paste0(outdir,
→˓"/ref_clust_pearson_correlations.tsv"), delim = "\t")

########## Create correlation figures ##########
col_fun = colorRampPalette(c("white", "red"))(101)
pPearsonCorrelations <- Heatmap(as.matrix(pearson_correlations), cluster_rows = T, col =␣
→˓col_fun)

########## Save the correlation figures ##########
png(filename = paste0(outdir,"/ref_clust_pearson_correlation.png"), width = 500)
print(pPearsonCorrelations)
dev.off()

(continues on next page)

38 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

########## Assign individual to cluster based on highest correlating individual #########
→˓#
key <- as.data.frame(matrix(nrow = ncol(pearson_correlations), ncol = 3))
colnames(key) <- c("Genotype_ID","Cluster_ID","Correlation")
key$Genotype_ID <- colnames(pearson_correlations)
for (id in key$Genotype_ID){

if (max(pearson_correlations[,id]) == max(pearson_correlations[rownames(pearson_
→˓correlations)[which.max(pearson_correlations[,id])],])){

key$Cluster_ID[which(key$Genotype_ID == id)] <- rownames(pearson_
→˓correlations)[which.max(pearson_correlations[,id])]

key$Correlation[which(key$Genotype_ID == id)] <- max(pearson_correlations[,id])
} else {

key$Cluster_ID[which(key$Genotype_ID == id)] <- "unassigned"
key$Correlation[which(key$Genotype_ID == id)] <- NA

}
}

write_delim(key, file = paste0(outdir,"/Genotype_ID_key.txt"), delim = "\t")

2.12.3 ScSplit Results and Interpretation

After running the ScSplit steps and summarizing the results, you will have a number of files from some of the interme-
diary steps. Theses are the files that most users will find the most informative:

• scSplit_doublets_singlets.csv

– The droplet assignment results. The first column is the droplet barcode and the second column is the
droplet type and cluster assignment separated by a dash. For example SNG-9 would indicate that cluster 9
are singlets.

Barcode Cluster
AAACCTGTCCGAATGT-1 SNG-0
AAACGGGAGTTGAGAT-1 SNG-0
AAACGGGCATGTCTCC-1 SNG-0
AAACGGGTCCACGAAT-1 SNG-0
AAACGGGTCCAGTAGT-1 SNG-0
AAACGGGTCGGCTTGG-1 SNG-0
AAAGATGTCCGAACGC-1 SNG-0
AAAGATGTCCGTCAAA-1 SNG-0
AAAGTAGCATCACGTA-1 SNG-0
.

If you ran the Assign_Indiv_by_Geno.R script, you will also have the following files:

• Genotype_ID_key.txt

– Key of the cluster and assignments for each individual and the Pearson correlation coefficient.

2.12. ScSplit 39

https://github.com/jon-xu/scSplit

Demuxafy, Release 0.0.3

Genotype_ID Cluster_ID Correlation
113_113 12 0.6448151
349_350 14 0.6663323
352_353 7 0.6596409
39_39 6 0.6398297
40_40 9 0.6191905
41_41 3 0.6324396
42_42 4 0.6560180
43_43 5 0.6672336
465_466 11 0.6297396
596_597 13 0.6273717
597_598 10 0.6627428
632_633 1 0.5899685
633_634 0 0.6157936
660_661 8 0.6423770

• ref_clust_pearson_correlation.png

– Figure of the Pearson correlation coefficients for each cluster-individual pair.

• ref_clust_pearson_correlations.tsv

– All of the Pearson correlation coefficients between the clusters and the individuals

40 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

Clus-
ter

113_113 349_350 352_353 39_39 40_40 . . .

0 0.184191039839868650.183282303206931290.191762729730322550.153769168058979940.19107524908934623. . .
1 0.198530152877440330.19816220749550040.192458402834783270.178557483333885330.19455433395443292. . .
2 0.179939590984145050.154770588338986630.264128336649249950.173606484450221420.16374615160876657. . .
3 0.21286169961533570.193251481480952840.217289916680881740.193465749987872220.17921651379211084. . .
4 0.175738204134198330.176295040873127170.164261566594653070.174279969836069640.18322785415879167. . .
. .

2.12.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.12.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as ScSplit.

2.13 Souporcell

Souporcell is a genotype-free demultiplexing software that does not require you to have SNP genotypes the donors
in your multiplexed capture. However, it can natively integrate SNP genotypes into the demultiplexing if you have
them available for all the donors in your pool. If you don’t have the reference SNP genotypes for all the donors in
your multiplexed pool, we have provided some scripts that will help identify clusters from given donors after running
Souporcell without the SNP genotypes. Depending on your downstream analyses, if you have reference SNP genotypes
for donors in your pool, you could also use Demuxlet, or Vireo.

One advantage that we have found immensely helpful about Souporcell is that it provides an ambient RNA estimate
for the pool. This can be helpful to identify samples that may have high ambient RNA estimates early in the analysis
pipeline so that it can be accounted for throughout downstream analyses.

2.13.1 Data

This is the data that you will need to have prepare to run Souporcell:

Required

• Common SNP genotypes vcf ($VCF)

– While not exactly required, using common SNP genotype locations enhances accuracy

∗ If you have reference SNP genotypes for individuals in your pool, you can use those

∗ If you do not have reference SNP genotypes, they can be from any large population resource (i.e. 1000
Genomes or HRC)

– Filter for common SNPs (> 5% minor allele frequency) and SNPs overlapping genes

• Barcode file ($BARCODES)

• Number of samples in pool ($N)

2.13. Souporcell 41

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1852-7
https://github.com/wheaton5/souporcell
https://github.com/wheaton5/souporcell
https://github.com/wheaton5/souporcell
https://github.com/wheaton5/souporcell

Demuxafy, Release 0.0.3

• Bam file ($BAM)

– Aligned single cell reads

• Reference fasta ($FASTA)

– that your reads were aligned to (or at least the same genome)

• Output directory ($SOUPORCELL_OUTDIR)

2.13.2 Run Souporcell

You can run Souporcell with or without reference SNP genotypes - follow the instructions for each bellow:

Without Reference SNP Genotypes

With Reference SNP Genotypes

If you don’t have reference SNP genotypes for all of your donors, you can run souporcell with the following command,
providing an appropriate thread number ($THREADS) for your system . Don’t worry if you only have reference SNP
genotypes for a subset of your donors, we have a script that will correlate the cluster and reference SNP genotypes.

singularity exec Demuxafy.sif souporcell_pipeline.py -i $BAM -b $BARCODES -f $FASTA -t
→˓$THREADS -o $SOUPORCELL_OUTDIR -k $N --common_variants $VCF

If you have reference SNP genotypes for all of your donors, you can run souporcell with the following command,
providing an appropriate thread number ($THREADS) for your system and listing the donor ids that correspond in the
$VCF file

singularity exec Demuxafy.sif souporcell_pipeline.py -i $BAM -b $BARCODES -f $FASTA -t
→˓$THREADS -o $SOUPORCELL_OUTDIR -k $N --known_genotypes $VCF --known_genotypes_sample_
→˓names donor1 donor donor3 donor4

Note

Souporcell can currently only be executed when either all or none of the individuals that have been pooled have
SNP genotypes. Further, the output still has cluster numbers but they should correspond to the order that you listed
your individuals. For example, if you have two individuals in your pool (donorA and donorB) and input them as
--known_genotypes_sample_names donorA donorB, then the output will have two clusters: 0 and 1. donorA
will correspond to 0 and donorB will correspond to 1.

Even when we have reference SNP genotypes, we typically runn Souporcell without reference SNP genotypes and then
use the cluster vs individual correlations (below) to assign clusters to individuals.

If Souporcell is successful, you will have these files in your $SOUPORCELL_OUTDIR:

.
alt.mtx
ambient_rna.txt
cluster_genotypes.vcf
clustering.done
clusters.err
clusters_tmp.tsv
clusters.tsv
common_variants_covered_tmp.vcf

(continues on next page)

42 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/wheaton5/souporcell
https://github.com/wheaton5/souporcell

Demuxafy, Release 0.0.3

(continued from previous page)

common_variants_covered.vcf
consensus.done
depth_merged.bed
doublets.err
fastqs.done
minimap.err
ref.mtx
remapping.done
retag.err
retagging.done
souporcell_minimap_tagged_sorted.bam
souporcell_minimap_tagged_sorted.bam.bai
troublet.done
variants.done
vartrix.done

Additional details about outputs are available below in the Souporcell Results and Interpretation.

Souporcell Summary

We have provided a script that will provide a summary of the number of droplets classified as doublets, ambiguous and
assigned to each cluster by Souporcell. You can run this to get a fast and easy summary of your results by providing
the souporcell result file:

singularity exec Demuxafy.sif bash souporcell_summary.sh $SOUPORCELL_OUTDIR/clusters.tsv

which should print:

Classification Assignment N
0 1441
1 980
10 1285
11 1107
12 1315
13 1529
2 1629
3 1473
4 1381
5 1360
6 1157
7 892
8 1111
9 1565
doublet 2757

or you can write the results to file:

singularity exec Demuxafy.sif bash souporcell_summary.sh $SOUPORCELL_OUTDIR/clusters.tsv␣
→˓> $SOUPORCELL_OUTDIR/souporcell_summary.tsv

Note

2.13. Souporcell 43

https://github.com/wheaton5/souporcell

Demuxafy, Release 0.0.3

To check if these numbers are consistent with the expected doublet rate in your dataset, you can use our Doublet
Estimation Calculator.

If the souporcell summary is successful, you will have this new file in your $SOUPORCELL_OUTDIR:

.
alt.mtx
ambient_rna.txt
cluster_genotypes.vcf
clustering.done
clusters.err
clusters_tmp.tsv
clusters.tsv
common_variants_covered_tmp.vcf
common_variants_covered.vcf
consensus.done
depth_merged.bed
doublets.err
fastqs.done
minimap.err
ref.mtx
remapping.done
retag.err
retagging.done
souporcell_minimap_tagged_sorted.bam
souporcell_summary.tsv
troublet.done
variants.done
vartrix.done

Additional details about outputs are available below in the Souporcell Results and Interpretation.

Correlating Cluster to Donor Reference SNP Genotypes (optional)

If you have reference SNP genotypes for some or all of the donors in your pool, you can identify which cluster is best
correlated with each donor in your reference SNP genotypes. We have provided a script that will do this and provide a
heatmap correlation figure and the predicted individual that should be assigned for each cluster. You can either run it
with the script by providing the reference SNP genotypes ($VCF), the cluster SNP genotypes ($SOUPORCELL_OUTDIR/
cluster_genotypes.vcf) and the output directory ($SOUPORCELL_OUTDIR) You can run this script with:

Note

In order to do this, your $VCF must be reference SNP genotypes for the individuals in the pool and cannot be a general
vcf with common SNP genotype locations from 1000 Genomes or HRC.

With Script

Run in R

singularity exec Demuxafy.sif Assign_Indiv_by_Geno.R -r $VCF -c $SOUPORCELL_OUTDIR/
→˓cluster_genotypes.vcf -o $SOUPORCELL_OUTDIR

To see the parameter help menu, type:

44 Chapter 2. Demultiplexing and Doublet Detecting Summary

test.html
test.html

Demuxafy, Release 0.0.3

singularity exec Demuxafy.sif Assign_Indiv_by_Geno.R -h

Which will print:

usage: Assign_Indiv_by_Geno.R [-h] -r REFERENCE_VCF -c CLUSTER_VCF -o OUTDIR

optional arguments:
-h, --help show this help message and exit
-r REFERENCE_VCF, --reference_vcf REFERENCE_VCF

The output directory where results will␣
→˓be saved
-c CLUSTER_VCF, --cluster_vcf CLUSTER_VCF

A QC, normalized seurat object with
classifications/clusters as Idents().

-o OUTDIR, --outdir OUTDIR
Number of genes to use in
'Improved_Seurat_Pre_Process' function.

You can run the reference vs cluster genotypes manually (possibly because your data doesn’t have GT, DS or GP
genotype formats) or because you would prefer to alter some of the steps. To run the correlations manually, simply
start R from the singularity image:

singularity exec Demuxafy.sif R

Once, R has started, you can load the required libraries (included in the singularity image) and run the code.

.libPaths("/usr/local/lib/R/site-library") ### Required so that libraries are loaded␣
→˓from the image instead of locally
library(tidyr)
library(tidyverse)
library(dplyr)
library(vcfR)
library(lsa)
library(ComplexHeatmap)

########## Set up paths and variables ##########

reference_vcf <- "/path/to/reference.vcf"
cluster_vcf <- "/path/to/souporcell/out/cluster_genotypes.vcf"
outdir <- "/path/to/souporcell/out/"

########## Set up functions ##########
Calculate DS from GP if genotypes in that format
calculate_DS <- function(GP_df){

columns <- c()
for (i in 1:ncol(GP_df)){

columns <- c(columns, paste0(colnames(GP_df)[i],"-0"), paste0(colnames(GP_df)[i],
→˓"-1"), paste0(colnames(GP_df)[i],"-2"))

}
df <- GP_df
colnames(df) <- paste0("c", colnames(df))

(continues on next page)

2.13. Souporcell 45

Demuxafy, Release 0.0.3

(continued from previous page)

colnames_orig <- colnames(df)
for (i in 1:length(colnames_orig)){

df <- separate(df, sep = ",", col = colnames_orig[i], into = columns[(1+(3*(i-
→˓1))):(3+(3*(i-1)))])

}
df <- mutate_all(df, function(x) as.numeric(as.character(x)))
for (i in 1: ncol(GP_df)){

GP_df[,i] <- df[,(2+((i-1)*3))] + 2* df[,(3+((i-1)*3))]
}
return(GP_df)

}

pearson_correlation <- function(df, ref_df, clust_df){
for (col in colnames(df)){

for (row in rownames(df)){
df[row,col] <- cor(as.numeric(pull(ref_df, col)), as.numeric(pull(clust_df,␣

→˓row)), method = "pearson", use = "complete.obs")
}

}
return(df)

}

########## Read in vcf files for each of three non-reference genotype softwares #########
→˓#
ref_geno <- read.vcfR(reference_vcf)
cluster_geno <- read.vcfR(cluster_vcf)

########## Convert to tidy data frame ##########
####### Identify which genotype FORMAT to use #######
Cluster VCF
Check for each of the different genotype formats
DS
format_clust=NA
cluster_geno_tidy <- as_tibble(extract.gt(element = "DS",cluster_geno, IDtoRowNames = F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
␣
→˓message("Found DS genotype format in cluster vcf. Will use that metric for cluster correlation.")
format_clust = "DS"

}

GT
if (is.na(format_clust)){
cluster_geno_tidy <- as_tibble(extract.gt(element = "GT",cluster_geno, IDtoRowNames =␣

→˓F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
␣

→˓message("Found GT genotype format in cluster vcf. Will use that metric for cluster correlation.")
format_clust = "GT"

(continues on next page)

46 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

if (any(grepl("\\|",cluster_geno_tidy[1,]))){
separator = "|"
message("Detected | separator for GT genotype format in cluster vcf")

} else if (any(grepl("/",cluster_geno_tidy[1,]))) {
separator = "/"
message("Detected / separator for GT genotype format in cluster vcf")

} else {
format_clust = NA
␣

→˓message("Can't identify a separator for the GT field in cluster vcf, moving on to using GP.")
}

cluster_geno_tidy <- as_tibble(lapply(cluster_geno_tidy, function(x)
→˓{gsub(paste0("0",separator,"0"),0, x)}) %>%

lapply(., function(x) {gsub(paste0("0",separator,"1"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"0"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"1"),2, x)}
→˓))

}
}

GP
if (is.na(format_clust)){

cluster_geno_tidy <- as_tibble(extract.gt(element = "GP",cluster_geno, IDtoRowNames␣
→˓=F))
if (!all(colSums(is.na(cluster_geno_tidy)) == nrow(cluster_geno_tidy))){
format_clust = "GP"
cluster_geno_tidy <- calculate_DS(cluster_geno_tidy)
␣

→˓message("Found GP genotype format in cluster vcf. Will use that metric for cluster correlation.")

} else {
␣

→˓print("Could not identify the expected genotype format fields (DS, GT or GP) in your cluster vcf. Please check the vcf file and make sure that one of the expected genotype format fields is included or run manually with your genotype format field of choice. Quitting")
q()

}
}

Reference VCF
Check for each of the different genotype formats
DS
format_ref = NA
ref_geno_tidy <- as_tibble(extract.gt(element = "DS",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
␣
→˓message("Found DS genotype format in reference vcf. Will use that metric for cluster correlation.")(continues on next page)

2.13. Souporcell 47

Demuxafy, Release 0.0.3

(continued from previous page)

format_ref = "DS"
}

GT
if (is.na(format_ref)){

ref_geno_tidy <- as_tibble(extract.gt(element = "GT",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
␣

→˓message("Found GT genotype format in reference vcf. Will use that metric for cluster correlation.")
format_ref = "GT"

if (any(grepl("\\|",ref_geno_tidy[1,]))){
separator = "|"
message("Detected | separator for GT genotype format in reference vcf")

} else if (any(grepl("/",ref_geno_tidy[1,]))) {
separator = "/"
message("Detected / separator for GT genotype format in reference vcf")

} else {
format_ref = NA
␣

→˓message("Can't identify a separator for the GT field in reference vcf, moving on to using GP.")
}

ref_geno_tidy <- as_tibble(lapply(ref_geno_tidy, function(x) {gsub(paste0("0",
→˓separator,"0"),0, x)}) %>%

lapply(., function(x) {gsub(paste0("0",separator,"1"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"0"),1, x)}
→˓) %>%

lapply(., function(x) {gsub(paste0("1",separator,"1"),2, x)}
→˓))

}
}

GP
if (is.na(format_ref)){

ref_geno_tidy <- as_tibble(extract.gt(element = "GP",ref_geno, IDtoRowNames = F))
if (!all(colSums(is.na(ref_geno_tidy)) == nrow(ref_geno_tidy))){
format_clust = "GP"
ref_geno_tidy <- calculate_DS(ref_geno_tidy)
␣

→˓message("Found GP genotype format in cluster vcf. Will use that metric for cluster correlation.")

} else {
␣

→˓print("Could not identify the expected genotype format fields (DS, GT or GP) in your cluster vcf. Please check the vcf file and make sure that one of the expected genotype format fields is included or run manually with your genotype format field of choice. Quitting")
q()

}
}

(continues on next page)

48 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

Get SNP IDs that will match between reference and cluster
Account for possibility that the ref or alt might be missing
if ((all(is.na(cluster_geno@fix[,'REF'])) & all(is.na(cluster_geno@fix[,'ALT']))) |␣
→˓(all(is.na(ref_geno@fix[,'REF'])) & all(is.na(ref_geno@fix[,'ALT'])))){
␣
→˓message("The REF and ALT categories are not provided for the reference and/or the cluster vcf. Will use just the chromosome and position to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'])

} else if (all(is.na(cluster_geno@fix[,'REF'])) | all(is.na(ref_geno@fix[,'REF']))){
␣
→˓message("The REF categories are not provided for the reference and/or the cluster vcf. Will use the chromosome, position and ALT to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'],"_", cluster_geno@fix[,'REF'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'REF'])
} else if (all(is.na(cluster_geno@fix[,'ALT'])) | all(is.na(ref_geno@fix[,'ALT']))){
␣
→˓message("The ALT categories are not provided for the reference and/or the cluster vcf. Will use the chromosome, position and REF to match SNPs.")
cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,

→˓'POS'],"_", cluster_geno@fix[,'ALT'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'ALT'])
} else {
␣
→˓message("Found REF and ALT in both cluster and reference genotype vcfs. Will use chromosome, position, REF and ALT to match SNPs.")

cluster_geno_tidy$ID <- paste0(cluster_geno@fix[,'CHROM'],":", cluster_geno@fix[,
→˓'POS'],"_", cluster_geno@fix[,'REF'],"_", cluster_geno@fix[,'ALT'])
ref_geno_tidy$ID <- paste0(ref_geno@fix[,'CHROM'],":", ref_geno@fix[,'POS'],"_", ref_

→˓geno@fix[,'REF'],"_", ref_geno@fix[,'ALT'])
}

Update the vcf dfs to remove SNPs with no genotyopes
cluster_geno_tidy <- cluster_geno_tidy[colSums(!is.na(cluster_geno_tidy)) > 0]
ref_geno_tidy <- ref_geno_tidy[colSums(!is.na(ref_geno_tidy)) > 0]

########## Get a unique list of SNPs that is in both the reference and cluster genotypes
→˓##########
locations <- inner_join(ref_geno_tidy[,"ID"],cluster_geno_tidy[,"ID"])
locations <- locations[!(locations$ID %in% locations[duplicated(locations),]$ID),]

########## Keep just the SNPs that overlap ##########
ref_geno_tidy <- left_join(locations, ref_geno_tidy)
cluster_geno_tidy <- left_join(locations, cluster_geno_tidy)

########## Correlate all the cluster genotypes with the individuals genotyped ##########
Make a dataframe that has the clusters as the row names and the individuals as the␣
→˓column names #####

(continues on next page)

2.13. Souporcell 49

Demuxafy, Release 0.0.3

(continued from previous page)

pearson_correlations <- as.data.frame(matrix(nrow = (ncol(cluster_geno_tidy) -1), ncol =␣
→˓(ncol(ref_geno_tidy) -1)))
colnames(pearson_correlations) <- colnames(ref_geno_tidy)[2:(ncol(ref_geno_tidy))]
rownames(pearson_correlations) <- colnames(cluster_geno_tidy)[2:(ncol(cluster_geno_
→˓tidy))]
pearson_correlations <- pearson_correlation(pearson_correlations, ref_geno_tidy, cluster_
→˓geno_tidy)
cluster <- data.frame("Cluster" = rownames(pearson_correlations))
pearson_correlations_out <- cbind(cluster, pearson_correlations)

########## Save the correlation dataframes ##########
write_delim(pearson_correlations_out, file = paste0(outdir,
→˓"/ref_clust_pearson_correlations.tsv"), delim = "\t")

########## Create correlation figures ##########
col_fun = colorRampPalette(c("white", "red"))(101)
pPearsonCorrelations <- Heatmap(as.matrix(pearson_correlations), cluster_rows = T, col =␣
→˓col_fun)

########## Save the correlation figures ##########
png(filename = paste0(outdir,"/ref_clust_pearson_correlation.png"), width = 500)
print(pPearsonCorrelations)
dev.off()

########## Assign individual to cluster based on highest correlating individual #########
→˓#
key <- as.data.frame(matrix(nrow = ncol(pearson_correlations), ncol = 3))
colnames(key) <- c("Genotype_ID","Cluster_ID","Correlation")
key$Genotype_ID <- colnames(pearson_correlations)
for (id in key$Genotype_ID){

if (max(pearson_correlations[,id]) == max(pearson_correlations[rownames(pearson_
→˓correlations)[which.max(pearson_correlations[,id])],])){

key$Cluster_ID[which(key$Genotype_ID == id)] <- rownames(pearson_
→˓correlations)[which.max(pearson_correlations[,id])]

key$Correlation[which(key$Genotype_ID == id)] <- max(pearson_correlations[,id])
} else {

key$Cluster_ID[which(key$Genotype_ID == id)] <- "unassigned"
key$Correlation[which(key$Genotype_ID == id)] <- NA

}
}

write_delim(key, file = paste0(outdir,"/Genotype_ID_key.txt"), delim = "\t")

After correlating the cluster and reference donor SNP genotypes, you should have the new results in your directory:

If the souporcell summary is successful, you will have this new file in your $SOUPORCELL_OUTDIR:

.
alt.mtx
ambient_rna.txt
cluster_genotypes.vcf
clustering.done

(continues on next page)

50 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

clusters.err
clusters_tmp.tsv
clusters.tsv
common_variants_covered_tmp.vcf
common_variants_covered.vcf
consensus.done
depth_merged.bed
doublets.err
fastqs.done
Genotype_ID_key.txt
Individual_genotypes_subset.vcf.gz
minimap.err
ref.mtx
ref_clust_pearson_correlation.png
ref_clust_pearson_correlations.tsv
remapping.done
retag.err
retagging.done
souporcell_minimap_tagged_sorted.bam
souporcell_summary.tsv
troublet.done
variants.done
vartrix.done

Additional details about outputs are available below in the Souporcell Results and Interpretation.

2.13.3 Souporcell Results and Interpretation

After running the Souporcell steps and summarizing the results, you will have a number of files from some of the
intermediary steps. These are the files that most users will find the most informative:

• To check if these numbers are consistent with the expected doublet rate in your dataset, you can use
our Expected Doublet Estimation Calculator.

• clusters.tsv

– The Souporcell droplet classifications with the log probabilities of each donor and doublet vs
singlet.

bar-
code

sta-
tus

as-
sign-
ment

log_prob_singletonlog_prob_doubletclus-
ter0

clus-
ter1

clus-
ter2

clus-
ter3

clus-
ter4

clus-
ter5

clus-
ter6

clus-
ter7

clus-
ter8

clus-
ter9

clus-
ter10

clus-
ter11

clus-
ter12

clus-
ter13

AAACCTGAGATAGCAT-
1

sin-
glet

6 -
47.4906809612613

-
67.16353115825044

-
189.38489711217204

-
167.22863078578243

-
175.6243866125455

-
195.88836978493757

-
147.1278571646738

-
162.71464140958287

-
47.4906809612613

-
147.57558470556503

-
142.24543450475267

-
137.94217556189426

-
171.6924681433834

-
192.9070590872178

-
162.2042834302814

-
141.9657291979218

AAACCTGAGCAGCGTA-
1

sin-
glet

11 -
102.80051804401324

-
158.38006105671326

-
357.5113573904763

-
403.04676141772245

-
465.3312627534814

-
368.72445203224066

-
362.5022337777086

-
377.5322002577741

-
400.12257643517944

-
436.7935123280712

-
364.36305907429954

-
434.8878131790703

-
393.42953156344277

-
102.80051804401324

-
369.5775718688619

-
403.83637627549155

AAACCTGAGCGATGAC-
1

sin-
glet

5 -
39.97694257579923

-
53.76617956926222

-
135.58935896223636

-
129.29863536547518

-
122.20920829636167

-
99.54420652897485

-
139.8403265674046

-
39.97694257579923

-
136.5313839118704

-
139.57805752070823

-
113.63185227373309

-
117.89083888468238

-
126.95555633151154

-
167.2476854256994

-
127.05455963457722

-
123.63808626520557

AAACCTGAGCGTAGTG-
1

sin-
glet

3 -
66.73447359908208

-
79.59130566934348

-
146.47954690347862

-
197.54291944344263

-
211.47148694945332

-
66.73447359908208

-
163.94180016636983

-
173.4754549428176

-
183.73592914945144

-
163.7126225130574

-
172.5171380662907

-
231.65011940831332

-
197.42816500995383

-
167.68988627905136

-
165.7006532267023

-
174.74052654720117

. .

• ambient_rna.txt

2.13. Souporcell 51

https://github.com/wheaton5/souporcell
test.html
https://github.com/wheaton5/souporcell

Demuxafy, Release 0.0.3

– The estimated ambient RNA percent in the pool. We typically see < 5% for scRNA-seq PBMCs
and < 10% for other scRNA-seq cell types.

ambient RNA estimated as 4.071468697320357%

If you ran the Assign_Indiv_by_Geno.R script, you will also have the following files:

• Genotype_ID_key.txt

– Key of the cluster and assignments for each individual and the Pearson correlation coefficient.

Genotype_ID Cluster_ID Correlation
113_113 5 0.9365902
349_350 3 0.9484794
352_353 2 0.9385500
39_39 12 0.9325007
40_40 8 0.9252865
41_41 6 0.9282633
42_42 0 0.9387788
43_43 9 0.9497327
465_466 11 0.9234109
596_597 10 0.9277824
597_598 13 0.9435752
632_633 7 0.9179054
633_634 1 0.9222734
660_661 4 0.9368751

• ref_clust_pearson_correlation.png

– Figure of the Pearson correlation coefficients for each cluster-individual pair.

• ref_clust_pearson_correlations.tsv

– All of the Pearson correlation coefficients between the clusters and the individuals

Clus-
ter

113_113 349_350 352_353 39_39 40_40 . . .

0 0.45780872413922150.45895733350178160.463512924533504460.489267206148801040.4841871441103791. . .
1 0.457064340438428250.482804452734614250.47026187973225480.46781878069650930.4801164797099736. . .
2 0.47601768323080620.452814886065081860.93855000366607240.477038292794766670.47639771569917855. . .
3 0.47717098082993280.94847943520673630.45983613637668270.46988325938272290.4822779587579728. . .
4 0.48518729333467520.484806378674317750.49082756543241420.489005944918091240.4647100675599844. . .
. .

2.13.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

52 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

2.13. Souporcell 53

Demuxafy, Release 0.0.3

2.13.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as Souporcell.

2.14 Vireo

Vireo is a flexible demultiplexing software that can demutliplex without any reference SNP genotypes, with reference
SNP genotypes for a subset of the donors in the pool or no reference SNP genotypes. If you have reference SNP
genotypes for all of the donors in your pool, you could also use Demuxlet or Souporcell. If you don’t have reference
SNP genotypes, you could alternatively use Freemuxlet or ScSplit.

2.14.1 Data

This is the data that you will need to have preparede to run Vireo:

Required

• Common SNP genotypes vcf ($VCF)

– If you have reference SNP genotypes for individuals in your pool, you can use those

∗ For Vireo you should only have the donors that are in this pool in the vcf file

– If you do not have reference SNP genotypes, they can be from any large population resource (i.e. 1000
Genomes or HRC)

– Filter for common SNPs (> 5% minor allele frequency) and SNPs overlapping genes

• Barcode file ($BARCODES)

• Number of samples in pool ($N)

• Bam file ($BAM)

– Aligned single cell reads

• Output directory ($VIREO_OUTDIR)

2.14.2 Run Vireo

CellSNP Pileup

First, you need to count the number of alleles at each SNP in each droplet using cellSNP-lite:

singularity exec Demuxafy.sif cellsnp-lite -s $BAM -b $BARCODES -O $VIREO_OUTDIR -R $VCF␣
→˓-p 20 --minMAF 0.1 --minCOUNT 20 --gzip

You can alter the -p, --minMAF and --minCOUNT parameters to fit your data and your needs. We have found these
settings to work well with our data.

If the pileup is successful, you will have this new file in your $VIREO_OUTDIR:

54 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://www.nature.com/articles/s41592-020-0820-1
https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

.
cellSNP.base.vcf.gz
cellSNP.samples.tsv
cellSNP.tag.AD.mtx
cellSNP.tag.DP.mtx
cellSNP.tag.OTH.mtx

Additional details about outputs are available below in the Vireo Results and Interpretation.

Demultiplex with Vireo

Next, we can use the cellSNP results to demultiplex the data with Vireo. As already mentioned, you can use Vireo with
multiple different levels of reference SNP genotypes. We’ve provided an example command for each of these differing
amounts of donor SNP genotype data.

With SNP Genotype Data for All Donors

With SNP Genotype Data for Some Donors

Without Donor SNP Genotype Data

You will need to provide which genotype measure ($FIELD) is provided in your donor SNP genotype file (GT, GP, or
PL); default is PL.

STRONGLY Recommended

For Vireo you should only have the donors that are in this pool in the vcf file. Vireo assumes all the individuals in your
vcf are in the pool - so if left unfiltered, it will check for all the individuals in the reference SNP genotype file.

Vireo also runs more efficiently when the SNPs from the donor $VCF have been filtered for the SNPs identified by
cellSNP-lite. Therefore, it is highly recommended subset the vcf first.

We can do both of these filtering actions at the same time with bcftools:

Note: If your reference SNP genotype $VCF is bgzipped (i.e. ends in .vcf.gz), you should first bgzip and
index your file with:

singularity exec Demuxafy.sif bgzip -c $VCF > $VCF.gz
singularity exec Demuxafy.sif tabix -p vcf $VCF.gz

singularity exec Demuxafy.sif bcftools view $VCF -R $VIREO_OUTDIR/cellSNP.base.
→˓vcf.gz -s sample1,sample2 -Ov -o $VIREO_OUTDIR/donor_subset.vcf

Alternatively, if you have the individuals from the pool in a file with each individuals separated by a new
line (individual_file.tsv), then you can use -S individual_file.tsv.

To run Vireo with reference SNP genotype data for your donors (ideally filtered as shown above):

singularity exec Demuxafy.sif vireo -c $VIREO_OUTDIR -d $VIREO_OUTDIR/donor_subset.vcf -
→˓o $VIREO_OUTDIR -t $FIELD

STRONGLY Recommended

2.14. Vireo 55

https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

For Vireo you should only have the donors that are in this pool in the reference SNP genotype vcf file. Vireo assumes
all the individuals in your vcf are in the pool - so if left unfiltered, it will check for all the individuals in the reference
SNP genotype file. It assumes that $N is larger than the number of donors in the $VCF

Vireo also runs more efficiently when the SNPs from the donor $VCF have been filtered for the SNPs identified by
cellSNP-lite. Therefore, it is highly recommended to subset the vcf first.

We can do both of these filtering actions at the same time with bcftools:

Note: If your reference SNP genotype $VCF is bgzipped (i.e. ends in .vcf.gz), you should first bgzip and
index your file with:

singularity exec Demuxafy.sif bgzip -c $VCF > $VCF.gz
singularity exec Demuxafy.sif tabix -p vcf $VCF.gz

singularity exec Demuxafy.sif bcftools view $VCF -R $VIREO_OUTDIR/cellSNP.base.
→˓vcf.gz -s sample1,sample2 -Ov -o $VIREO_OUTDIR/donor_subset.vcf

Alternatively, if you have the individuals from the pool in a file with each individuals separated by a new
line (individual_file.tsv), then you can use -S individual_file.tsv.

Recommended

Vireo runs more efficiently when the SNPs from the donor $VCF have been filtered for the SNPs identified by
cellSNP-lite. Therefore, it is highly recommended subset the vcf as follows first:

singularity exec Demuxafy.sif bcftools view $VCF -R $VIREO_OUTDIR/cellSNP.base.
→˓vcf.gz -Oz -o $VIREO_OUTDIR/donor_subset.vcf

singularity exec Demuxafy.sif vireo -c $VIREO_OUTDIR -d $VIREO_OUTDIR/donor_subset.vcf.
→˓gz -o $VIREO_OUTDIR -t $FIELD -N $N

singularity exec Demuxafy.sif vireo -c $VIREO_OUTDIR -o $VIREO_OUTDIR -N $N

If Vireo is successful, you will have these new files in your $VIREO_OUTDIR:

.
cellSNP.base.vcf
cellSNP.samples.tsv
cellSNP.tag.AD.mtx
cellSNP.tag.DP.mtx
cellSNP.tag.OTH.mtx
donor_ids.tsv
donor_subset.vcf
fig_GT_distance_estimated.pdf
_log.txt
prob_doublet.tsv.gz
prob_singlet.tsv.gz
summary.tsv

Additional details about outputs are available below in the Vireo Results and Interpretation.

56 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/statgen/popscle

Demuxafy, Release 0.0.3

2.14.3 Vireo Results and Interpretation

After running the Vireo steps, you will have a number of files in your $VIREO_OUTDIR. These are the files that most
users will find the most informative:

• summary.tsv

– A summary of the droplets assigned to each donor, doublets and unassigned.

Var1 Freq
113_113 1342
349_350 1475
352_353 1619
39_39 1309
40_40 1097
41_41 1144
42_42 1430
43_43 1561
465_466 1104
596_597 1271
597_598 1532
632_633 871
633_634 967
660_661 1377
doublet 2770
unassigned 113

∗ To check whether the number of doublets identified by Vireo is consistent with the expected doublet
rate based on the number of droplets that you captured, you can use our Expected Doublet Estimation
Calculator.

• donor_ids.tsv

– The classification of each droplet, and some droplet metrics.

cell donor_id prob_max prob_doubletn_vars best_singlet best_doublet
AAACCTGAGATAGCAT-
1

41_41 1.00e+00 9.13e-09 115 41_41 40_40,41_41

AAACCTGAGCAGCGTA-
1

465_466 1.00e+00 5.03e-17 239 465_466 349_350,43_43

AAACCTGAGCGATGAC-
1

113_113 1.00e+00 7.57e-07 98 113_113 113_113,633_634

AAACCTGAGCGTAGTG-
1

349_350 1.00e+00 8.07e-07 140 349_350 349_350,597_598

AAACCTGAGGAGTTTA-
1

632_633 1.00e+00 5.99e-11 177 632_633 40_40,113_113

AAACCTGAGGCTCATT-
1

39_39 1.00e+00 4.44e-06 110 39_39 39_39,40_40

2.14. Vireo 57

https://github.com/statgen/popscle
https://github.com/statgen/popscle
test.html
test.html

Demuxafy, Release 0.0.3

2.14.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.14.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as Vireo.

2.15 Overview of Doublet Detecting Softwares

Transcription-based doublet detection softwares use the transcriptomic profiles in each cell to predict whether that cell
is a singlet or doublet. Most methods simulate doublets by adding the transcriptional profiles of two droplets in your
pool together. Therefore, these approaches assume that only a small percentage of the droplets in your dataset are
doublets. The table bellow provides a comparison of the different methods.

If you don’t know which demultiplexing software(s) to run, take a look at our Software Selection Recommendations
based on your dataset.

2.16 DoubletDecon

DoubletDecon is a transcription-based doublet detection software that uses deconvolution to identify doublets using
the R statistical software. We have provided a wrapper script that takes common arguments for DoubletDecon and also
provide example code for you to run manually if you prefer.

2.16.1 Data

This is the data that you will need to have prepare to run DoubletDecon:

Required

• A QC-filtered and normalized seurat object saved as an rds object ($SEURAT_RDS)

– For example, using the Seurat Vignette

– If you run DoubletDecon manually, you can use any data format of interest and read in with a method that
works for your data.

• Output directory ($DOUBLETDECON_OUTDIR)

58 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1865-2
https://github.com/EDePasquale/DoubletDecon
https://github.com/EDePasquale/DoubletDecon
https://github.com/EDePasquale/DoubletDecon
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://github.com/EDePasquale/DoubletDecon

Demuxafy, Release 0.0.3

2.16.2 Run DoubletDecon

You can either run DoubletDecon with the wrapper script we have provided or you can run it manually if you would
prefer to alter more parameters.

With Wrapper Script

Run in R

Note

Since it is hard to predict the correct rhop to use for each dataset, we typically run a range. For example: 0.6, 0.7, 0.8,
0.9, 1, and 1.1. Then we select the results that predict the number of doublets closest to the expected doublet number.
You can estimate that number with our doublet calculator The rhop parameter can be set with -r or --rhop in the
command below.

singularity exec Demuxafy.sif DoubletDecon.R -o $DOUBLETDECON_OUTDIR -s $SEURAT_RDS

You can provide many other parameters as well which can be seen from running a help request:

singularity exec image DoubletDecon.R -h

usage: DoubletDecon.R [-h] -o OUT -s SEURAT_OBJECT [-g NUM_GENES] [-r RHOP]
[-p SPECIES] [-n NCORES] [-c REMOVECC] [-m PMF]
[-f HEATMAP] [-t CENTROIDS] [-d NUM_DOUBS] [-5 ONLY50]
[-u MIN_UNIQ]

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT The output directory where results will be saved
-s SEURAT_OBJECT, --seurat_object SEURAT_OBJECT

A QC, normalized seurat object with classifications/clusters as␣
→˓Idents() saved as an rds object.
-g NUM_GENES, --num_genes NUM_GENES

Number of genes to use in 'Improved_Seurat_Pre_Process' function.
-r RHOP, --rhop RHOP rhop to use in DoubletDecon - the number of SD from the mean to␣

→˓identify upper limit to blacklist
-p SPECIES, --species SPECIES

The species of your sample. Can be scientific species name, KEGG␣
→˓ID, three letter species abbreviation, or NCBI ID.
-n NCORES, --nCores NCORES

The number of unique cores you would like to use to run␣
→˓DoubletDecon. By default, uses one less than available detected.
-c REMOVECC, --removeCC REMOVECC

Whether to remove clusters enriched in cell cycle genes.
-m PMF, --pmf PMF Whether to use unique gene expression in doublet determination.
-f HEATMAP, --heatmap HEATMAP

Whether to generate heatmaps.
-t CENTROIDS, --centroids CENTROIDS

Whether to use centroids instead of medoids for doublet␣
→˓detecting.
-d NUM_DOUBS, --num_doubs NUM_DOUBS

The number of doublets to simulate for each cluster pair.
(continues on next page)

2.16. DoubletDecon 59

https://github.com/EDePasquale/DoubletDecon

Demuxafy, Release 0.0.3

(continued from previous page)

-5 ONLY50, --only50 ONLY50
Whether to only compute doublets as 50:50 ratio. Default is to␣

→˓use other ratios as well.
-u MIN_UNIQ, --min_uniq MIN_UNIQ

Minimum number of unique genes to rescue a cluster identified as␣
→˓doublets.

First, you will have to start R. We have built R and all the required software to run DoubletDecon into the singularity
image so you can run it directly from the image.

singularity exec Demuxafy.sif R

That will open R in your terminal. Next, you can load all the libraries and run DoubletDecon.

.libPaths("/usr/local/lib/R/site-library") ### This is required so that R uses the␣
→˓libraries loaded in the image and not any local libraries
library(DoubletDecon)
library(tidyverse)
library(Seurat)
library(ggplot2)
library(data.table)

Set up variables
out <- "/path/to/doubletdecon/outdir"
SEURAT_RDSect <- "/path/to/preprocessed/SEURAT_RDSect.rds"

make sure the directory exists
dir.create(out, recursive = TRUE)

Read in Data
seurat <- readRDS(SEURAT_RDSect)

Preprocess
processed <- Improved_Seurat_Pre_Process(seurat, num_genes=50, write_files=FALSE)

Run Doublet Decon
results <- Main_Doublet_Decon(rawDataFile = processed$newExpressionFile,
groupsFile = processed$newGroupsFile,
filename = "DoubletDecon_results",
location = paste0(out, "/"),
fullDataFile = NULL,
removeCC = FALSE,
species = "hsa",
rhop = 0.9, ## We recommend testing multiple rhop parameters␣

→˓to find which fits your data the best
write = TRUE,
PMF = TRUE,
useFull = FALSE,
heatmap = FALSE,

(continues on next page)

60 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/EDePasquale/DoubletDecon
https://github.com/EDePasquale/DoubletDecon

Demuxafy, Release 0.0.3

(continued from previous page)

centroids=FALSE,
num_doubs=100,
only50=FALSE,
min_uniq=4,
nCores = 1)

doublets <- read.table(paste0(out, "/Final_doublets_groups_DoubletDecon_results.txt"))
doublets$Barcode <- gsub("\\.", "-",rownames(doublets))
doublets$DoubletDecon_DropletType <- "doublet"
doublets$V1 <- NULL
doublets$V2 <- NULL

singlets <- read.table(paste0(out, "/Final_nondoublets_groups_DoubletDecon_results.txt"))
singlets$Barcode <- gsub("\\.", "-",rownames(singlets))
singlets$DoubletDecon_DropletType <- "singlet"
singlets$V1 <- NULL
singlets$V2 <- NULL

doublets_singlets <- rbind(singlets,doublets)

fwrite(doublets_singlets, paste0(out, "/DoubletDecon_doublets_singlets.tsv"), sep = "\t",
→˓ append = FALSE)

Make a summary of the number of singlets and doublets
summary <- as.data.frame(table(doublets_singlets$DoubletDecon_DropletType))
colnames(summary) <- c("Classification", "Droplet N")
fwrite(summary, paste0(out,"/DoubletDecon_doublet_summary.tsv"), sep = "\t", append =␣
→˓FALSE)

2.16.3 DoubletDecon Results and Interpretation

After running the DoubletDecon, you will have multiple files in the $DOUBLETDECON_OUTDIR:

.
data_processed_DoubletDecon_results.txt
data_processed_reclust_DoubletDecon_results.txt
DoubletDecon_doublets_singlets.tsv
DoubletDecon_doublet_summary.tsv
DoubletDecon_results.log
DRS_doublet_table_DoubletDecon_results.txt
DRS_results_DoubletDecon_results.txt
Final_doublets_exp_DoubletDecon_results.txt
Final_doublets_groups_DoubletDecon_results.txt
Final_nondoublets_exp_DoubletDecon_results.txt
Final_nondoublets_groups_DoubletDecon_results.txt
groups_processed_DoubletDecon_results.txt

(continues on next page)

2.16. DoubletDecon 61

https://github.com/EDePasquale/DoubletDecon

Demuxafy, Release 0.0.3

(continued from previous page)

groups_processed_reclust_DoubletDecon_results.txt
new_PMF_results_DoubletDecon_results.txt
resultsreadable_synths.txt
Synth_doublet_info_DoubletDecon_results.txt

DoubletDecon puts most of the results in multiple separate files. However, the wrapper script and the example code
has some steps to combine these results together into a single file, which will likely be the most informative output.
These are the files that we think will be the most helpful for users:

• DoubletDecon_doublet_summary.tsv

– A summary of the number of singlets and doublets predicted by DoubletDecon.

Classification Droplet N
doublet 1510
singlet 19470

∗ To check whether the numbe of doublets identified by DoubletDecon is consistent with the expected
doublet rate expected based on the number of droplets that you captured, you can use our Expected
Doublet Estimation Calculator.

• DoubletDecon_doublets_singlets.tsv

– The per-barcode singlet and doublet classification from DoubletDecon.

Barcode DoubletDecon_DropletType
AAACCTGAGCAGCGTA-1 singlet
AAACCTGAGCGATGAC-1 singlet
AAACCTGAGCGTAGTG-1 singlet
AAACCTGAGGCTCATT-1 singlet
AAACCTGAGTAGCCGA-1 singlet
.

2.16.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.16.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as DoubletDecon.

62 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/EDePasquale/DoubletDecon
https://github.com/EDePasquale/DoubletDecon
https://github.com/EDePasquale/DoubletDecon
test.html
test.html
https://github.com/EDePasquale/DoubletDecon
https://www.sciencedirect.com/science/article/pii/S2211124719312860

Demuxafy, Release 0.0.3

2.17 DoubletDetection

DoubletDetection is a transcription-based doublet detection software. This was one of the better-performing doublet
detecting softwares that we identified in our paper (CITE) and it is also relatively fast to run. We have provided a
wrapper script that enables DoubletDetection to be easily run from the command line but we also provide example
code so that users can run manually as well depending on their data.

2.17.1 Data

This is the data that you will need to have prepare to run DoubletDetection:

Required

• A counts matrix ($COUNTS)

– DoubletDetection expects counts to be in the cellranger output format either as

∗ h5 file (filtered_feature_bc_matrix.h5)

or

∗ matrix directory (directory containing barcodes.tsv, genes.tsv and matrix.mtx or barcodes.
tsv.gz, features.tsv.gz and matrix.mtx.gz)

∗ If you don’t have your data in either of these formats, you can run DoubletDetection manually in python
and load the data in using a method of your choosing.

Optional

• Output directory ($DOUBLETDETECTION_OUTDIR)

– If you don’t provide an $DOUBLETDETECTION_OUTDIR, the results will be written to the present working
directory.

2.17.2 Run DoubletDetection

You can either run DoubletDetection with the wrapper script we have provided or you can run it manually if you would
prefer to alter more parameters.

With Wrapper Script

Run in python

singularity exec Demuxafy.sif DoubletDetection.py -m $COUNTS -o $DOUBLETDETECTION_OUTDIR

To see all the parameters that this wrapper script will accept, run:

singularity exec Demuxafy.sif DoubletDetection.py -h

usage: DoubletDetection.py [-h] -m COUNTS_MATRIX [-b BARCODES] [-o OUTDIR] [-i N_
→˓ITERATIONS] [-p PHENOGRAPH] [-s STANDARD_SCALING] [-t P_THRESH] [-v VOTER_THRESH]

wrapper for DoubletDetection for doublet detection from transcriptomic data.
(continues on next page)

2.17. DoubletDetection 63

https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection

Demuxafy, Release 0.0.3

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-m COUNTS_MATRIX, --counts_matrix COUNTS_MATRIX

cell ranger counts matrix directory containing matrix files or␣
→˓full path to matrix.mtx. Can also also provide the 10x h5.
-b BARCODES, --barcodes BARCODES

File containing droplet barcodes. Use barcodes from provided 10x␣
→˓dir by default.
-o OUTDIR, --outdir OUTDIR

The output directory; default is current working directory
-i N_ITERATIONS, --n_iterations N_ITERATIONS

Number of iterations to use; default is 50
-p PHENOGRAPH, --phenograph PHENOGRAPH

Whether to use phenograph (True) or not (False); default is False
-s STANDARD_SCALING, --standard_scaling STANDARD_SCALING

Whether to use standard scaling of normalized count matrix prior␣
→˓to PCA (True) or not (False); default is True
-t P_THRESH, --p_thresh P_THRESH

P-value threshold for doublet calling; default is 1e-16
-v VOTER_THRESH, --voter_thresh VOTER_THRESH

Voter threshold for doublet calling; default is 0.5

To run DoubletDetection manually, first start python from the singularity image (all the required software have been
provided in the image)

singularity exec Demuxafy.sif python

Now, python will open in your terminal and you can run the DoubletDetection code. Here is an example:

import os
import numpy as np
import doubletdetection
import tarfile
import matplotlib
matplotlib.use('PDF')
import matplotlib.pyplot as plt
import sys
import pandas as pd

Load read10x function from mods directory

mods_path = "/opt/Demultiplexing_Doublet_Detecting_Docs/mods" ## custom script for␣
→˓loading 10x data in python
sys.path.append(mods_path)
import read10x

Set up parameters and variables
counts_matrix = "/path/to/counts/matrix.mtx"
outdir = "/path/to/doublet/detection/outdir"

(continues on next page)

64 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection

Demuxafy, Release 0.0.3

(continued from previous page)

if not os.path.isdir(outdir):
os.mkdir(outdir)

Read in data
raw_counts = read10x.import_cellranger_mtx(counts_matrix)

try:
barcodes_df = read10x.read_barcodes(counts_matrix + "/barcodes.tsv.gz")

except:
try:
barcodes_df = read10x.read_barcodes(counts_matrix + "/barcodes.tsv")

except:
␣

→˓print("No barcode file in provided counts matrix directory. Please double check the directory or provide the full path to the barcode file to use.")

print('Counts matrix shape: {} rows, {} columns'.format(raw_counts.shape[0], raw_counts.
→˓shape[1]))

Remove columns with all 0s
zero_genes = (np.sum(raw_counts, axis=0) == 0).A.ravel()
raw_counts = raw_counts[:, ~zero_genes]
print('Counts matrix shape after removing unexpressed genes: {} rows, {} columns'.
→˓format(raw_counts.shape[0], raw_counts.shape[1]))

clf = doubletdetection.BoostClassifier(n_iters=50, use_phenograph=True, standard_
→˓scaling=False, verbose = True)
doublets = clf.fit(raw_counts).predict(p_thresh=1e-16, voter_thresh=50)

results = pd.Series(doublets, name="DoubletDetection_DropletType")
dataframe = pd.concat([barcodes_df, results], axis=1)
dataframe.DoubletDetection_DropletType = dataframe.DoubletDetection_DropletType.
→˓replace(1.0, "doublet")
dataframe.DoubletDetection_DropletType = dataframe.DoubletDetection_DropletType.
→˓replace(0.0, "singlet")

dataframe.to_csv(os.path.join(outdir,'DoubletDetection_doublets_singlets.tsv'), sep =␣
→˓"\t", index = False)

Figures
doubletdetection.plot.convergence(clf, save=os.path.join(outdir,'convergence_test.pdf'),␣
→˓show=False, p_thresh=1e-16, voter_thresh=0.5)

f3 = doubletdetection.plot.threshold(clf, save=os.path.join(outdir,'threshold_test.pdf'),
→˓ show=False, p_step=6)

Make summary of singlets and doublets and write to file
summary = pd.DataFrame(dataframe.DoubletDetection_DropletType.value_counts())
summary.index.name = 'Classification'
summary.reset_index(inplace=True)

(continues on next page)

2.17. DoubletDetection 65

Demuxafy, Release 0.0.3

(continued from previous page)

summary = summary.rename({'DoubletDetection_DropletType': 'Droplet N'}, axis=1)

summary.to_csv(os.path.join(outdir,'DoubletDetection_summary.tsv'), sep = "\t", index =␣
→˓False)

2.17.3 DoubletDetection Results and Interpretation

After running the DoubletDetection, you will have multiple files in the $DOUBLETDETECTION_OUTDIR:

.
convergence_test.pdf
DoubletDetection_doublets_singlets.tsv
DoubletDetection_summary.tsv
threshold_test.pdf

We have found these to be the most helpful:

• DoubletDetection_summary.tsv

– A summary of the number of singlets and doublets predicted by DoubletDetection.

DoubletDetection_DropletType Droplet N
doublet 2594
singlet 18388

– To check whether the number of doublets identified by DoubletDetection is consistent with the expected
doublet rate expected based on the number of droplets that you captured, you can use our Expected Doublet
Estimation Calculator.

• DoubletDetection_doublets_singlets.tsv

– The per-barcode singlet and doublet classification from DoubletDetection.

Barcode DoubletDetection_DropletType
AAACCTGAGATAGCAT-1 singlet
AAACCTGAGCAGCGTA-1 singlet
AAACCTGAGCGATGAC-1 singlet
AAACCTGAGCGTAGTG-1 singlet
AAACCTGAGGAGTTTA-1 singlet
AAACCTGAGGCTCATT-1 singlet
AAACCTGAGGGCACTA-1 singlet
.

• convergence_test.pdf

– The expectation is that after multiple rounds, the expected number of doublets will converge. If that is not
the case, we suggest that you run DoubletDetection for more iterations (try 150, or even 250 if that isn’t
convincing).

– Here are two figures - one of a sample that came to convergence after 50 iterations (left) and one that did
not (right)

66 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection
https://github.com/JonathanShor/DoubletDetection
test.html
test.html
https://github.com/JonathanShor/DoubletDetection

Demuxafy, Release 0.0.3

Good Converged Bad Convergence

2.17.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.17.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as DoubletDetection.

2.18 DoubletFinder

DoubletFinder is a transcription-based doublet detection software that uses simulated doublets to find droplets that has
a high proportion of neighbors that are doublets. We have provided a wrapper script that takes common arguments for
DoubletFinder and we also provide an example script that you can run manually in R if you prefer.

2.18.1 Data

This is the data that you will need to have preparede to run DoubletFinder:

Required

• A QC-filtered and normalized seurat object saved as an rds object ($SEURAT_RDS)

– For example, using the Seurat Vignette

– If you run DoubletFinder manually, you can use any data format of interest and read in with a method that
works for your data.

• Output directory ($DOUBLETFINDER_OUTDIR)

• Expected number of doublets ($DOUBLETS)

– This can be calculated based on the number of droplets captured using our doublet calculator

2.18. DoubletFinder 67

https://zenodo.org/record/4359992
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://github.com/chris-mcginnis-ucsf/DoubletFinder

Demuxafy, Release 0.0.3

2.18.2 Run DoubletFinder

You can either run DoubletFinder with the wrapper script we have provided or you can run it manually if you would
prefer to alter more parameters.

With Wrapper Script

Run in R

singularity exec Demuxafy.sif DoubletFinder.R -o $DOUBLETFINDER_OUTDIR -s $SEURAT_RDS -c␣
→˓TRUE -d $DOUBLETS

You can provide many other parameters as well which can be seen from running a help request:

singularity exec Demuxafy.sif DoubletFinder.R -h

usage: DoubletFinder.R [-h] -o OUT -s SEURAT_OBJECT -c SCT -d DOUBLET_NUMBER [-p PCS] [-
→˓n PN]

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT The output directory where results will be saved
-s SEURAT_OBJECT, --seurat_object SEURAT_OBJECT

A QC, normalized seurat object with classifications/clusters as␣
→˓Idents() saved as an rds object.
-c SCT, --sct SCT Whether sctransform was used for normalization.
-d DOUBLET_NUMBER, --doublet_number DOUBLET_NUMBER

Number of expected doublets based on droplets captured.
-p PCS, --PCs PCS Number of PCs to use for 'doubletFinder_v3' function.
-n PN, --pN PN Number of doublets to simulate as a proportion of the pool size.

First, you will have to start R. We have built R and all the required software to run DoubletFinder into the singularity
image so you can run it directly from the image.

singularity exec Demuxafy.sif R

That will open R in your terminal. Next, you can load all the libraries and run DoubletFinder.

.libPaths("/usr/local/lib/R/site-library") ### This is required so that R uses the␣
→˓libraries loaded in the image and not any local libraries
library(Seurat)
library(ggplot2)
library(DoubletFinder)
library(dplyr)
library(tidyr)
library(tidyverse)

Set up parameters
out <- "/path/to/doubletfinder/outdir"
SEURAT_RDSect <- "/path/to/preprocessed/SEURAT_RDSect.rds"
doublet_number <- 3200

(continues on next page)

68 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder

Demuxafy, Release 0.0.3

(continued from previous page)

make sure the directory exists
dir.create(out, recursive = TRUE)

Add max future globals size for large pools
options(future.globals.maxSize=(850*1024^2))

Read in the data
seurat <- readRDS(SEURAT_RDSect)

pK Identification (no ground-truth) --
→˓-------------------------------------
sweep.res.list <- paramSweep_v3(seurat, PCs = 1:10, sct = TRUE)
sweep.stats <- summarizeSweep(sweep.res.list, GT = FALSE)
bcmvn <- find.pK(sweep.stats)
plot <- ggplot(bcmvn, aes(pK, BCmetric)) +

geom_point()
ggsave(plot, filename = paste0(out,"/pKvBCmetric.png"))

Homotypic Doublet Proportion Estimate --
→˓-------------------------------------
annotations <- Idents(seurat)
homotypic.prop <- modelHomotypic(annotations)
nExp_poi <- doublet_number
print(paste0("Expected number of doublets: ", doublet_number))
nExp_poi.adj <- round(doublet_number*(1-homotypic.prop))

Run DoubletFinder with varying classification stringencies ---------------------------
→˓-------------------------------------
seurat <- doubletFinder_v3(seurat, PCs = 1:10, pN = 0.25, pK = as.numeric(as.
→˓character(bcmvn$pK[which(bcmvn$BCmetric == max(bcmvn$BCmetric))])), nExp = nExp_poi.
→˓adj, reuse.pANN = FALSE, sct = TRUE)
doublets <- as.data.frame(cbind(colnames(seurat), seurat@meta.data[,
→˓grepl(paste0("pANN_0.25_",as.numeric(as.character(bcmvn$pK[which(bcmvn$BCmetric ==␣
→˓max(bcmvn$BCmetric))]))), colnames(seurat@meta.data))], seurat@meta.data[,
→˓grepl(paste0("DF.classifications_0.25_",as.numeric(as.character(bcmvn$pK[which(bcmvn
→˓$BCmetric == max(bcmvn$BCmetric))]))), colnames(seurat@meta.data))]))
colnames(doublets) <- c("Barcode","DoubletFinder_score","DoubletFinder_DropletType")
doublets$DoubletFinder_DropletType <- gsub("Singlet","singlet",doublets$DoubletFinder_
→˓DropletType) %>% gsub("Doublet","doublet",.)

write_delim(doublets, file = paste0(out,"/DoubletFinder_doublets_singlets.tsv"), delim =␣
→˓"\t")

Calculate number of doublets and singlets
summary <- as.data.frame(table(doublets$DoubletFinder_DropletType))
colnames(summary) <- c("Classification", "Droplet N")
write_delim(summary, paste0(out,"/DoubletFinder_doublet_summary.tsv"), "\t")

2.18. DoubletFinder 69

Demuxafy, Release 0.0.3

2.18.3 DoubletFinder Results and Interpretation

After running the DoubletFinder, you will have multiple files in the $DOUBLETFINDER_OUTDIR:

.
DoubletFinder_doublets_singlets.tsv
DoubletFinder_doublet_summary.tsv
pKvBCmetric.png

Here’s a more detailed description of the contents of each of those files:

• DoubletFinder_doublet_summary.tsv

– A sumamry of the number of singlets and doublets predicted by DoubletFinder.

Classification Droplet N
doublet 3014
singlet 16395

∗ To check whether the numbe of doublets identified by DoubletFinder is consistent with the expected
doublet rate expected based on the number of droplets that you captured, you can use our Expected
Doublet Estimation Calculator.

• DoubletFinder_doublets_singlets.tsv

– The per-barcode singlet and doublet classification from DoubletFinder.

Barcode DoubletFinder_score DoubletFinder_DropletType
AAACCTGAGATAGCAT-1 0.206401766004415 singlet
AAACCTGAGCAGCGTA-1 0.144039735099338 singlet
AAACCTGAGCGATGAC-1 0.191501103752759 singlet
AAACCTGAGCGTAGTG-1 0.212472406181015 singlet
AAACCTGAGGAGTTTA-1 0.242273730684327 singlet
AAACCTGAGGCTCATT-1 0.211368653421634 singlet
AAACCTGAGGGCACTA-1 0.626379690949227 doublet
.

• pKvBCmetric.png

– This is the metric that DoubletFinder uses to call doublets and singlets. Typically the pK value at the
maximum BC value is the best doublet calling threshold.

– If you do not have a clear BC maximum, see responses from the DoubletFinder developer here and here for
possible solutions.

2.18.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

70 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
test.html
test.html
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/chris-mcginnis-ucsf/DoubletFinder/issues/62
https://github.com/chris-mcginnis-ucsf/DoubletFinder/issues/71

Demuxafy, Release 0.0.3

2.18. DoubletFinder 71

Demuxafy, Release 0.0.3

2.18.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as DoubletFinder.

2.19 ScDblFinder

scDblFinder is a transcriptome-based doublet detecting method that uses doublet simulation from droplets in the dataset
to identify doublets. We have provided a wrapper script that takes common arguments for ScDblFinder and also provide
example code for you to run manually if you prefer.

2.19.1 Data

This is the data that you will need to have prepare to run ScDblFinder:

Required

• A counts matrix ($COUNTS)

– The directory path containing your cellranger counts matrix files (directory containing barcodes.tsv,
genes.tsv and matrix.mtx or barcodes.tsv.gz, features.tsv.gz and matrix.mtx.gz)

or

– h5 file (filtered_feature_bc_matrix.h5)

∗ If you don’t have your data in this format, you can run ScDblFinder manually in R and load the data in
using a method of your choosing.

• Output directory ($SCDBLFINDER_OUTDIR)

– If you don’t provide an $SCDBLFINDER_OUTDIR, the results will be written to the present working directory.

2.19.2 Run ScDblFinder

You can either run ScDblFinder with the wrapper script we have provided or you can run it manually if you would
prefer to alter more parameters.

With Wrapper Script

Run in R

singularity exec Demuxafy.sif scDblFinder.R -o $SCDBLFINDER_OUTDIR -t $COUNTS

First, you will have to start R. We have built R and all the required software to run ScDblFinder into the singularity
image so you can run it directly from the image.

singularity exec Demuxafy.sif R

That will open R in your terminal. Next, you can load all the libraries and run ScDblFinder.

.libPaths("/usr/local/lib/R/site-library") ### This is required so that R uses the␣
→˓libraries loaded in the image and not any local libraries
library(scDblFinder)

(continues on next page)

72 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://www.sciencedirect.com/science/article/pii/S2405471219300730
https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder

Demuxafy, Release 0.0.3

(continued from previous page)

library(Seurat)
library(SingleCellExperiment)
library(tidyverse)

Set up variables and parameters
out <- "/path/to/scds/outdir/"
tenX_matrix <- "/path/to/counts/matrix/dir/"

dir.create(out, recursive = TRUE)
print(paste0("Using the following counts directory: ", tenX_matrix))

Read in data as an sce object
counts <- Read10X(tenX_matrix, gene.column = 1) ## or Read10X_h5 if using h5 file as␣
→˓input
sce <- SingleCellExperiment(list(counts=counts))

Calculate doublet ratio
doublet_ratio <- ncol(sce)/1000*0.008

Calculate Singlets and Doublets
sce <- scDblFinder(sce, dbr=doublet_ratio)

Make a dataframe of the results
results <- data.frame("Barcode" = rownames(colData(sce)), "scDblFinder_DropletType" = sce
→˓$scDblFinder.class, "scDblFinder_Score" = sce$scDblFinder.score)

write_delim(results, path = paste0(out,"/scDblFinder_doublets_singlets.tsv"), delim =␣
→˓"\t")

Calculate number of doublets and singlets
summary <- as.data.frame(table(results$scDblFinder_DropletType))
colnames(summary) <- c("Classification", "Droplet N")
write_delim(summary, paste0(out,"/scDblFinder_doublet_summary.tsv"), "\t")

2.19.3 ScDblFinder Results and Interpretation

After running the ScDblFinder with the wrapper script or manually you should have two files in the
$SCDBLFINDER_OUTDIR:

.
scDblFinder_doublets_singlets.tsv
scDblFinder_doublet_summary.tsv

Here’s a more detaild description of each of those files:

2.19. ScDblFinder 73

https://github.com/plger/scDblFinder

Demuxafy, Release 0.0.3

• scDblFinder_doublet_summary.tsv

– A sumamry of the number of singlets and doublets predicted by ScDblFinder.

Classification Droplet N
doublet 3323
singlet 17659

∗ To check whether the numbe of doublets identified by ScDblFinder is consistent with the expected
doublet rate expected based on the number of droplets that you captured, you can use our Expected
Doublet Estimation Calculator.

• scDblFinder_doublets_singlets.tsv

– The per-barcode singlet and doublet classification from ScDblFinder.

Barcode scDblFinder_DropletType scDblFinder_Score
AAACCTGAGATAGCAT-1 singlet 0.0033526041079312563
AAACCTGAGCAGCGTA-1 doublet 0.9937564134597778
AAACCTGAGCGATGAC-1 singlet 5.045032594352961e-
AAACCTGAGCGTAGTG-1 singlet 0.007504515815526247
AAACCTGAGGAGTTTA-1 singlet 0.00835108570754528
AAACCTGAGGCTCATT-1 singlet 0.028838597238063812
AAACCTGAGGGCACTA-1 doublet 0.9985504746437073
AAACCTGAGTAATCCC-1 singlet 0.005869860760867596
.

2.19.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.19.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as ScDblFinder.

2.20 Scds

Scds is a transcription-based doublet detection software that uses two different methods to detect doublets - cxds and
bcds. The cxds method uses marker genes that are not co-expressed to identify droplets that are likely doublets. bcds
simulates doublet by adding droplet transcriptomes together and then uses variable genes to identify the probability a
droplet is a doublet with a binary classification algorithm. We typically use the combined score of these two methods
but they can be use separately as well. We have provided a wrapper script that takes common arguments for Scds and
we also provide an example script that you can run manually in R if you prefer.

74 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder
test.html
test.html
https://github.com/plger/scDblFinder
https://github.com/plger/scDblFinder
https://github.com/kostkalab/scds
https://github.com/kostkalab/scds

Demuxafy, Release 0.0.3

2.20.1 Data

This is the data that you will need to have prepare to run Scds:

Required

• A counts matrix ($COUNTS)

– The directory path containing your cellranger counts matrix files (directory containing barcodes.tsv,
genes.tsv and matrix.mtx or barcodes.tsv.gz, features.tsv.gz and matrix.mtx.gz)

or

– h5 file (filtered_feature_bc_matrix.h5)

∗ If you don’t have your data in this format, you can run Scds manually in R and load the data in using
a method of your choosing.

• Output directory ($SCDS_OUTDIR)

– If you don’t provide an $SCDS_OUTDIR, the results will be written to the present working directory.

2.20.2 Run Scds

You can either run Scds with the wrapper script we have provided or you can run it manually if you would prefer to
alter more parameters.

With Wrapper Script

Run in R

singularity exec Demuxafy.sif scds.R -o $SCDS_OUTDIR -t $COUNTS

First, you will have to start R. We have built R and all the required software to run Scds into the singularity image so
you can run it directly from the image.

singularity exec Demuxafy.sif R

That will open R in your terminal. Next, you can load all the libraries and run Scds.

.libPaths("/usr/local/lib/R/site-library") ### This is required so that R uses the␣
→˓libraries loaded in the image and not any local libraries
library(dplyr)
library(tidyr)
library(tidyverse)
library(scds)
library(Seurat)
library(SingleCellExperiment)

Set up variables and parameters
out <- "/path/to/scds/outdir/"
tenX_matrix <- "/path/to/counts/matrix/dir/"

Read in data
counts <- Read10X(as.character(tenX_matrix), gene.column = 1) ## or Read10X_h5 if using␣
→˓h5 file as input

(continues on next page)

2.20. Scds 75

https://github.com/kostkalab/scds
https://github.com/kostkalab/scds
https://github.com/kostkalab/scds
https://github.com/kostkalab/scds
https://github.com/kostkalab/scds

Demuxafy, Release 0.0.3

(continued from previous page)

Account for possibility that not just single cell data
if (is.list(counts)){
sce <- SingleCellExperiment(list(counts=counts[[grep("Gene", names(counts))]]))

} else {
sce <- SingleCellExperiment(list(counts=counts))

}

Annotate doublet using binary classification based doublet scoring:
sce = bcds(sce, retRes = TRUE, estNdbl=TRUE)

Annotate doublet using co-expression based doublet scoring:
try({

sce = cxds(sce, retRes = TRUE, estNdbl=TRUE)
})

If cxds worked, run hybrid, otherwise use bcds annotations
if ("cxds_score" %in% colnames(colData(sce))) {

Combine both annotations into a hybrid annotation
sce = cxds_bcds_hybrid(sce, estNdbl=TRUE)
Doublets <- as.data.frame(cbind(rownames(colData(sce)), colData(sce)$hybrid_score,␣

→˓colData(sce)$hybrid_call))
} else {

print("this pool failed cxds so results are just the bcds calls")
Doublets <- as.data.frame(cbind(rownames(colData(sce)), colData(sce)$bcds_score,␣

→˓colData(sce)$bcds_call))
}

Doublet scores are now available via colData:
colnames(Doublets) <- c("Barcode","scds_score","scds_DropletType")
Doublets$scds_DropletType <- gsub("FALSE","singlet",Doublets$scds_DropletType)
Doublets$scds_DropletType <- gsub("TRUE","doublet",Doublets$scds_DropletType)

message("writing output")
write_delim(Doublets, paste0(out,"/scds_doublets_singlets.tsv"), "\t")

summary <- as.data.frame(table(Doublets$scds_DropletType))
colnames(summary) <- c("Classification", "Droplet N")
write_delim(summary, paste0(out,"/scds_doublet_summary.tsv"), "\t")

2.20.3 Scds Results and Interpretation

After running the Scds with the wrapper script or manually you should have two files in the $SCDS_OUTDIR:

.
scds_doublets_singlets.tsv
scds_doublet_summary.tsv

• scds_doublet_summary.tsv

– A summary of the number of singlets and doublets predicted by Scds.

76 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/kostkalab/scds
https://github.com/kostkalab/scds

Demuxafy, Release 0.0.3

Classification Droplet N
doublet 2771
singlet 18211

∗ To check whether the number of doublets identified by Scds is consistent with the expected doublet
rate expected based on the number of droplets that you captured, you can use our Expected Doublet
Estimation Calculator.

• scds_doublets_singlets.tsv

– The per-barcode singlet and doublet classification from Scds.

Barcode scds_score scds_DropletType
AAACCTGAGATAGCAT-1 0.116344358493288 singlet
AAACCTGAGCAGCGTA-1 0.539856378453988 singlet
AAACCTGAGCGATGAC-1 0.0237184380134577 singlet
AAACCTGAGCGTAGTG-1 0.163695865366576 singlet
AAACCTGAGGAGTTTA-1 0.11591462421927 singlet
AAACCTGAGGCTCATT-1 0.0479944175570073 singlet
AAACCTGAGGGCACTA-1 0.374426050641161 singlet
AAACCTGAGTAATCCC-1 0.247842972104563 singlet
.

2.20.4 Merging Results with Other Software Retults

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.20.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as scds.

2.21 Scrublet

Scrublet is a transcription-based doublet detecting software. We have provided a wrapper script that enables Scrublet
to be easily run from the command line but we also provide example code so that users can run manually as well
depending on their data.

2.21.1 Data

This is the data that you will need to have prepare to run Scrublet:

Required

• A counts matrix ($COUNTS)

– Scrublet expects counts to be in the cellranger output format either as

∗ h5 file (filtered_feature_bc_matrix.h5)

or

2.21. Scrublet 77

https://github.com/kostkalab/scds
test.html
test.html
https://github.com/kostkalab/scds
https://academic.oup.com/bioinformatics/article/36/4/1150/5566507
https://github.com/swolock/scrublet
https://github.com/swolock/scrublet
https://github.com/swolock/scrublet
https://github.com/swolock/scrublet

Demuxafy, Release 0.0.3

∗ matrix directory (directory containing barcodes.tsv, genes.tsv and matrix.mtx or barcodes.
tsv.gz, features.tsv.gz and matrix.mtx.gz)

∗ If you don’t have your data in this format, you can run Scrublet manually in python and load the data
in using a method of your choosing.

Optional

• Output directory ($SCRUBLET_OUTDIR)

– If you don’t provide an $SCRUBLET_OUTDIR, the results will be written to the present working directory.

2.21.2 Run Scrublet

You can either run Scrublet with the wrapper script we have provided or you can run it manually if you would prefer
to alter more parameters.

Note

It is a good idea to try multiple different percentile variable numbers. We typically try, 80, 85, 90 and 95. Then we
choose the one that has the best defined bimodal distribution based on the doublet_score_histogram.png (see
Scrublet Results and Interpretation for details).

With Wrapper Script

Run in python

singularity exec Demuxafy.sif Scrublet.py -m $COUNTS -o $SCRUBLET_OUTDIR

To see all the parameters that this wrapper script will accept, run:

singularity exec Demuxafy.sif Scrublet.py -h

usage: Scrublet.py [-h] -m COUNTS_MATRIX [-b BARCODES] [-r SIM_DOUBLET_RATIO] [-c MIN_
→˓COUNTS] [-e MIN_CELLS] [-v MIN_GENE_VARIABILITY_PCTL] [-p N_PRIN_COMPS] [-t SCRUBLET_
→˓DOUBLET_THRESHOLD] [-o OUTDIR]

wrapper for scrublet for doublet detection of transcriptomic data.

optional arguments:
-h, --help show this help message and exit
-m COUNTS_MATRIX, --counts_matrix COUNTS_MATRIX

cell ranger counts matrix directory containing matrix files or␣
→˓full path to matrix.mtx. Can also also provide the 10x h5.
-b BARCODES, --barcodes BARCODES

barcodes.tsv or barcodes.tsv.gz from cellranger
-r SIM_DOUBLET_RATIO, --sim_doublet_ratio SIM_DOUBLET_RATIO

Number of doublets to simulate relative to the number of␣
→˓observed transcriptomes.
-c MIN_COUNTS, --min_counts MIN_COUNTS

(continues on next page)

78 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/swolock/scrublet
https://github.com/swolock/scrublet

Demuxafy, Release 0.0.3

(continued from previous page)

Used for gene filtering prior to PCA. Genes expressed at fewer␣
→˓than min_counts in fewer than min_cells are excluded.
-e MIN_CELLS, --min_cells MIN_CELLS

Used for gene filtering prior to PCA. Genes expressed at fewer␣
→˓than min_counts in fewer than are excluded.
-v MIN_GENE_VARIABILITY_PCTL, --min_gene_variability_pctl MIN_GENE_VARIABILITY_PCTL

Used for gene filtering prior to PCA. Keep the most highly␣
→˓variable genes in the top min_gene_variability_pctl percentile), as measured by the v-
→˓statistic [Klein et al., Cell 2015].
-p N_PRIN_COMPS, --n_prin_comps N_PRIN_COMPS

Number of principal components used to embed the transcriptomes␣
→˓priorto k-nearest-neighbor graph construction.
-t SCRUBLET_DOUBLET_THRESHOLD, --scrublet_doublet_threshold SCRUBLET_DOUBLET_THRESHOLD

Manually Set the scrublet doublet threshold location. For␣
→˓running a second time if scrublet incorrectly places the threshold the first time
-o OUTDIR, --outdir OUTDIR

The output directory

To run Scrublet manually, first start python from the singularity image (all the required software have been provided in
the image)

singularity exec Demuxafy.sif python

Now, python will open in your terminal and you can run the Scrublet code. Here is an example:

import sys
import os
import scrublet as scr
import scipy.io
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import umap
import numba
import numba.typed

Get path of mods directory from current script directory
mods_path = "/opt/Demultiplexing_Doublet_Detecting_Docs/mods"
sys.path.append(mods_path)
import read10x

Set up parameters and variables
counts_matrix_dir = "/path/to/counts/matrix/dir/"
outdir = "/path/to/doublet/detection/outdir"

if not os.path.isdir(outdir):
os.mkdir(outdir)

plt.rc('font', size=14)
(continues on next page)

2.21. Scrublet 79

https://github.com/swolock/scrublet
https://github.com/swolock/scrublet

Demuxafy, Release 0.0.3

(continued from previous page)

plt.rcParams['pdf.fonttype'] = 42

Basic run with scrublet
counts_matrix = read10x.import_cellranger_mtx(counts_matrix_dir) ## or scanpy.read_10x_
→˓h5(counts_matrix_dir)

try:
barcodes_df = read10x.read_barcodes(counts_matrix_dir + "/barcodes.tsv.gz")

except:
try:
barcodes_df = read10x.read_barcodes(counts_matrix_dir + "/barcodes.tsv")

except:
␣

→˓print("No barcode file in provided counts matrix directory. Please double check the directory or provide the full path to the barcode file to use.")

dbl_rate = counts_matrix.shape[0]/1000 * 0.008
print('Counts matrix shape: {} rows, {} columns'.format(counts_matrix.shape[0], counts_
→˓matrix.shape[1]))
scrub = scr.Scrublet(counts_matrix, expected_doublet_rate=dbl_rate, sim_doublet_ratio =␣
→˓2)
doublet_scores, predicted_doublets = scrub.scrub_doublets(min_counts=3,

min_cells=3,
min_gene_variability_pctl=85,
n_prin_comps=30)

Plotting and saving
scrub.plot_histogram();
plt.savefig(os.path.join(outdir,'doublet_score_histogram.png'))
print('Running UMAP...')
scrub.set_embedding('UMAP', scr.get_umap(scrub.manifold_obs_, 10, min_dist=0.3))
print('Done.')
scrub.plot_embedding('UMAP', order_points=True);
plt.savefig(os.path.join(outdir,'UMAP.png'))

results = pd.Series(scrub.predicted_doublets_, name="scrublet_DropletType")
scores = pd.Series(scrub.doublet_scores_obs_, name="scrublet_Scores")
dataframe = pd.concat([barcodes_df, results, scores], axis=1)
dataframe.scrublet_DropletType = dataframe.scrublet_DropletType.replace(True, "doublet")
dataframe.scrublet_DropletType = dataframe.scrublet_DropletType.replace(False, "singlet")

dataframe.to_csv(os.path.join(outdir,'scrublet_results.tsv'), sep = "\t", index = False)

Make summary of singlets and doublets and write to file
summary = pd.DataFrame(dataframe.scrublet_DropletType.value_counts())
summary.index.name = 'Classification'
summary.reset_index(inplace=True)
summary = summary.rename({'scrublet_DropletType': 'Droplet N'}, axis=1)

(continues on next page)

80 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

summary.to_csv(os.path.join(outdir,'scrublet_summary.tsv'), sep = "\t", index = False)

2.21.3 Scrublet Results and Interpretation

After running the Scrublet, you will have four files in the $SCRUBLET_OUTDIR:

.
doublet_score_histogram.png
scrublet_results.tsv
scrublet_summary.tsv
UMAP.png

We have found these to be the most helpful:

• scrublet_summary.tsv

– A summary of the number of singlets and doublets predicted by Scrublet.

scrublet_DropletType Droplet N
doublet 1851
singlet 19131

– To check whether the number of doublets identified by Scrublet is consistent with the expected doublet rate
expected based on the number of droplets that you captured, you can use our Expected Doublet Estimation
Calculator.

• scrublet_results.tsv

Barcode scrublet_DropletType scrublet_Scores
AAACCTGAGATAGCAT-1 singlet 0.0545
AAACCTGAGCAGCGTA-1 singlet 0.1179
AAACCTGAGCGATGAC-1 singlet 0.1356
AAACCTGAGCGTAGTG-1 singlet 0.0844
AAACCTGAGGAGTTTA-1 singlet 0.0958
AAACCTGAGGCTCATT-1 singlet 0.1329
AAACCTGAGGGCACTA-1 doublet 0.4474
.

• doublet_score_histogram.png

– This is the method that Scrublet uses to identify doublets - it assumes a bimodal distribution of doublet
scores. Those droplets with lower scores should be singlets and those with higher scores should be doublets.
It identifies the correct threshold by identifying the minimum of the bimodal distribution of simulated
doublets (right).

– However, sometimes there is not a good bimodal distribution and sometimes you will have to set the thresh-
old manually.

– Here is an example of a good distribution (left) and a bad distribution (left)

2.21. Scrublet 81

https://github.com/swolock/scrublet
https://github.com/swolock/scrublet
https://github.com/swolock/scrublet
test.html
test.html
https://github.com/swolock/scrublet

Demuxafy, Release 0.0.3

Good Distribution Bad Distribution

∗ In the case of the left sample, we would rerun with different parameters to try to get a better distribution
and possibly manually set the threshold to ~0.2 depending on the results. In the event that we can’t
achieve a clear bimodal distribution, we don’t use scrublet for doublet detecting.

2.21.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.21.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as Scrublet.

2.22 Solo

Solo is a transcription-based doublet detecting software that was one of the better transcription-based doublet detecting
softwares that we tested (CITATION).

2.22.1 Data

This is the data that you will need to have prepare to run Solo:

Required

• Parameter json file ($JSON)

– Solo has provided an example file that we have found to work well for most of our data.

• Counts ($COUNTS)

– This can be a h5ad file, loom file, or 10x counts matrix directory (containing barcodes.tsv, genes.tsv
and matrix.mtx or barcodes.tsv.gz, features.tsv.gz and matrix.mtx.gz)

• Output directory ($SOLO_OUTDIR)

Optional

• Expected number of doublets ($N_DOUB)

82 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(18)30474-5
https://github.com/calico/solo
https://github.com/calico/solo
https://github.com/calico/solo

Demuxafy, Release 0.0.3

2.22.2 Run Solo

singularity exec Demuxafy.sif solo -o $SOLO_OUTDIR -e $N_DOUB -j $JSON -d $COUNTS

Solo also has additional parameters that can be seen with:

singularity exec Demuxafy.sif solo -h

usage: solo [-h] -j MODEL_JSON_FILE -d DATA_PATH
[--set-reproducible-seed REPRODUCIBLE_SEED]
[--doublet-depth DOUBLET_DEPTH] [-g] [-a] [-o OUT_DIR]
[-r DOUBLET_RATIO] [-s SEED] [-e EXPECTED_NUMBER_OF_DOUBLETS] [-p]
[-recalibrate_scores] [--version]

optional arguments:
-h, --help show this help message and exit
-j MODEL_JSON_FILE json file to pass VAE parameters (default: None)
-d DATA_PATH path to h5ad, loom, or 10x mtx dir cell by genes

counts (default: None)
--set-reproducible-seed REPRODUCIBLE_SEED

Reproducible seed, give an int to set seed (default:
None)

--doublet-depth DOUBLET_DEPTH
Depth multiplier for a doublet relative to the average
of its constituents (default: 2.0)

-g Run on GPU (default: True)
-a output modified anndata object with solo scores Only

works for anndata (default: False)
-o OUT_DIR
-r DOUBLET_RATIO Ratio of doublets to true cells (default: 2)
-s SEED Path to previous solo output directory. Seed VAE

models with previously trained solo model. Directory
structure is assumed to be the same as solo output
directory structure. should at least have a vae.pt a
pickled object of vae weights and a latent.npy an
np.ndarray of the latents of your cells. (default:
None)

-e EXPECTED_NUMBER_OF_DOUBLETS
Experimentally expected number of doublets (default:
None)

-p Plot outputs for solo (default: False)
-recalibrate_scores Recalibrate doublet scores (not recommended anymore)

(default: False)
--version Get version of solo-sc (default: False)

If Solo runs correctly, you should have the following files and directory structure in your $SOLO_OUTDIR:

.
classifier

attr.pkl
model_params.pt
var_names.csv

is_doublet.csv
(continues on next page)

2.22. Solo 83

https://github.com/calico/solo
https://github.com/calico/solo

Demuxafy, Release 0.0.3

(continued from previous page)

is_doublet.npy
is_doublet_sim.npy
latent.npy
logit_scores.csv
logit_scores.npy
logit_scores_sim.npy
no_updates_softmax_scores.csv
no_updates_softmax_scores.npy
no_updates_softmax_scores_sim.npy
preds.csv
preds.npy
smoothed_preds.npy
softmax_scores.csv
softmax_scores.npy
vae

attr.pkl
model_params.pt
var_names.csv

Solo Summary

We have provided a script that will summarize the number of droplets classified as doublets and singlets by Solo and
write it to the $SOLO_OUTDIR. This script also combines some of the Solo outputs into a single file that can be more
easily used for downstream analyses. You can run this to get a fast and easy summary of your results with:

singularity exec Demuxafy.sif solo_summary.py -b $BARCODES -s $SOLO_OUTDIR

If successful, you should have two new files in your $SOLO_OUTDIR:

.
classifier

attr.pkl
model_params.pt
var_names.csv

is_doublet.csv
is_doublet.npy
is_doublet_sim.npy
latent.npy
logit_scores.csv
logit_scores.npy
logit_scores_sim.npy
no_updates_softmax_scores.csv
no_updates_softmax_scores.npy
no_updates_softmax_scores_sim.npy
preds.csv
preds.npy
smoothed_preds.npy
softmax_scores.csv
softmax_scores.npy
solo_results.tsv
solo_summary.tsv

(continues on next page)

84 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://github.com/calico/solo
https://github.com/calico/solo

Demuxafy, Release 0.0.3

(continued from previous page)

vae
attr.pkl
model_params.pt
var_names.csv

2.22.3 Solo Results and Interpretation

Solo puts most of the results in multiple separate files. However, the wrapper script and the example code has some
steps to combine these results together into a single file, which will likely be the most informative output.

• solo_summary.tsv

– A summary of the number of singlets and doublets predicted by Solo.

Classification Droplet N
singlet 17461
doublet 3521

– To check whether the number of doublets identified by Solo is consistent with the expected doublet rate
expected based on the number of droplets that you captured, you can use our Expected Doublet Estimation
Calculator.

• solo_results.tsv

– The per-barcode singlet and doublet classification from Solo.

Barcode solo_DropletType solo_DropletScore
AAACCTGAGATAGCAT-1 singlet -8.442187
AAACCTGAGCAGCGTA-1 singlet -2.8096201
AAACCTGAGCGATGAC-1 singlet -2.8949203
AAACCTGAGCGTAGTG-1 singlet -5.928284
AAACCTGAGGAGTTTA-1 doublet 0.2749935
AAACCTGAGGCTCATT-1 singlet -5.2726507
AAACCTGAGGGCACTA-1 singlet -0.65760195
AAACCTGAGTAATCCC-1 singlet -3.5948637
.

2.22.4 Merging Results with Other Software Results

We have provided a script that will help merge and summarize the results from multiple softwares together. See Com-
bine Results.

2.22. Solo 85

https://github.com/calico/solo
https://github.com/calico/solo
https://github.com/calico/solo
test.html
test.html
https://github.com/calico/solo

Demuxafy, Release 0.0.3

2.22.5 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE) as well as solo.

2.23 Combining Results

After you have run each of the Demultiplexing and Doublet Detecting softwares you would like, it is helpful to convert
them to similar nomenclature and combine the results into a single dataframe. In addition, we have found it helpful
to generate summaries of each of the combinations of softwares identified. To help streamline this process, we have
provided a script that will easily integrate all the softwares you have run into a single dataframe and can do the following:

1. Generate a dataframe that has all the software assignments per droplet in the pool

• A tab-separated dataframe with the droplet singlet-doublet classification and the individual assign-
ment (for demultiplexing softwares) per droplet

1. Generate an upset plot that shows the droplet classificaitons by each software and the final classifi-
cations

2. Generate a droplet type summary file

• Provides the number of droplets classified for each combination of droplet classifications by each
software

1. Generate demultiplexing individual assignment summary file

• Provides the number of droplets classified for each combination of individual assignment droplet
classifications by each software

1. If individuals have not been assigned to each cluster for reference-free demultiplexing softwares, will
create a common assignment across all demultiplexing softwares for easy comparison

2. Combined final droplet assignment from all softwares included

• Uses one of four intersectional methods to combine software assignments together into a single com-
bined assignment per barcode

and to generate a summary file for all the software combinations and if you ran demultiplexing softwares, it will also
generate a demultiplexing summary file for the individual and cluster assignments from the demultiplexing softwares.

2.23.1 Data

In order to use our script to combine the results from the various demultiplexing and doublet detecting softwares, you
need the following:

Required

• Output directory ($OUTDIR)

• Path to results of each of the softwares you would like to merge into a single dataframe.

– You need to provide the path to at least one software result, otherwise, it will not run.

86 Chapter 2. Demultiplexing and Doublet Detecting Summary

https://www.sciencedirect.com/science/article/pii/S2405471220301952

Demuxafy, Release 0.0.3

2.23.2 Merging Results with Combine_Results.R

The script has multiple options to provide the paths to each of the software results you would like to run. To see each
of the options, simply run:

singularity exec Demuxafy.sif Combine_Results.R -h

Providing the possible parameter options:

usage: /directflow/SCCGGroupShare/projects/DrewNeavin/Demultiplex_Benchmark/
→˓Demultiplexing_Doublet_Detecting_Docs/scripts/Combine_Results.R

[-h] -o OUT [-d DEMUXLET] [-f FREEMUXLET] [-g FREEMUXLET_ASSIGNMENTS]
[-a FREEMUXLET_CORRELATION_LIMIT] [-s SCSPLIT] [-w SCSPLIT_ASSIGNMENTS]
[-j SCSPLIT_CORRELATION_LIMIT] [-u SOUPORCELL]
[-x SOUPORCELL_ASSIGNMENTS] [-k SOUPORCELL_CORRELATION_LIMIT]
[-v VIREO] [-e DOUBLETDECON] [-t DOUBLETDETECTION] [-i DOUBLETFINDER]
[-n SCDBLFINDER] [-c SCDS] [-r SCRUBLET] [-l SOLO] [-b REF]
[-p PCT_AGREEMENT] [-m METHOD]

optional arguments:
-h, --help show this help message and exit
-o OUT, --out OUT The file where results will be saved
-d DEMUXLET, --demuxlet DEMUXLET

Path to demuxlet results. Only use this option if you
want to include the demuxlet results.

-f FREEMUXLET, --freemuxlet FREEMUXLET
Path to freemuxlet results. Only use this option if
you want to include the freemuxlet results.

-g FREEMUXLET_ASSIGNMENTS, --freemuxlet_assignments FREEMUXLET_ASSIGNMENTS
Path to freemuxlet cluster-to-individual assignments.
Only use this option if have used reference SNP
genotypes to assign individuals to clusters for the
freemuxlet results.

-a FREEMUXLET_CORRELATION_LIMIT, --freemuxlet_correlation_limit FREEMUXLET_CORRELATION_
→˓LIMIT

The minimum correlation between the cluster and the
individual SNP genotypes which should be considered as
a valid assignment. If you want no limit, use 0.
Default is 0.7.

-s SCSPLIT, --scSplit SCSPLIT
Path to scSplit results. Only use this option if you
want to include the scSplit results.

-w SCSPLIT_ASSIGNMENTS, --scSplit_assignments SCSPLIT_ASSIGNMENTS
Path to scSplit cluster-to-individual assignments.
Only use this option if you have used reference SNP
genotypes to assign individuals to clusters for the
scSplit results.

-j SCSPLIT_CORRELATION_LIMIT, --scSplit_correlation_limit SCSPLIT_CORRELATION_LIMIT
The minimum correlation between the cluster and the
individual SNP genotypes which should be considered as
a valid assignment. If you want no limit, use 0.
Default is 0.7.

-u SOUPORCELL, --souporcell SOUPORCELL
Path to souporcell results. Only use this option if

(continues on next page)

2.23. Combining Results 87

Demuxafy, Release 0.0.3

(continued from previous page)

you want to include the souporcell results.
-x SOUPORCELL_ASSIGNMENTS, --souporcell_assignments SOUPORCELL_ASSIGNMENTS

Path to souporcell cluster-to-individual assignments.
Only use this option if you have used reference SNP
genotypes to assign individuals to clusters for the
souporcell results.

-k SOUPORCELL_CORRELATION_LIMIT, --souporcell_correlation_limit SOUPORCELL_CORRELATION_
→˓LIMIT

The minimum correlation between the cluster and the
individual SNP genotypes which should be considered as
a valid assignment. If you want no limit, use 0.
Default is 0.7.

-v VIREO, --vireo VIREO
Path to vireo results. Only use this option if you
want to include the vireo results.

-e DOUBLETDECON, --DoubletDecon DOUBLETDECON
Path to DoubletDecon results. Only use this option if
you want to include the DoubletDecon results.

-t DOUBLETDETECTION, --DoubletDetection DOUBLETDETECTION
Path to DoubletDetection results. Only use this option
if you want to include the DoubletDetection results.

-i DOUBLETFINDER, --DoubletFinder DOUBLETFINDER
Path to DoubletFinder results. Only use this option if
you want to include the DoubletFinder results.

-n SCDBLFINDER, --scDblFinder SCDBLFINDER
Path to scDblFinder results. Only use this option if
you want to include the scDblFinder results.

-c SCDS, --scds SCDS Path to scds results. Only use this option if you want
to include the scds results.

-r SCRUBLET, --scrublet SCRUBLET
Path to scrublet results. Only use this option if you
want to include the scrublet results.

-l SOLO, --solo SOLO Path to solo results. Only use this option if you want
to include the solo results.

-b REF, --ref REF Which demultiplexing software to use as a reference
for individuals when you do not have assignment key
for all demultiplexing method. Options are 'Demuxlet',
'Freemuxlet', 'scSplit', 'Souporcell' and 'Vireo'. If
blank when assignment keys are missing, default
softwares to use if present are Vireo, then Demuxlet,
then Freemuxlet, then Souporcell, then scSplit.

-p PCT_AGREEMENT, --pct_agreement PCT_AGREEMENT
The proportion of a cluster that match the 'ref'
assignment to assign that cluster the individual
assignment from the reference. Can be between 0.5 and
1. Default is 0.9.

-m METHOD, --method METHOD
Combination method. Options are 'MajoritySinglet'.
'AtLeastHalfSinglet', 'AnySinglet' or 'AnyDoublet'. We
have found that 'MajoritySinglet' provides the most
accurate results in most situations and therefore
recommend this method. See https://demultiplexing-

(continues on next page)

88 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

(continued from previous page)

doublet-detecting-
docs.readthedocs.io/en/latest/CombineResults.html for
detailed explanation of each intersectional method.
Leave blank if you just want all the softwares to be
merged into a single dataframe.

Combination Methods - Additional Information

There are four options for making combined droplet type (singlet or doublet) and individual assignment from the
softwares used:

• MajoritySinglet

– If more than half of the softwares identify a droplet as a singlet, it is classified as a singlet.

– If more than half the demultiplexing softwares identify the same indivdual, that assignment is used for the
droplet.

– We have found

• AtLeastHalfSinglet

– If at least half of the softwares identify a droplet as a singlet, it is classified as a singlet.

– If at least half the demultiplexing softwares identify the same indivdual, that assignment is used for the
droplet.

• AnySinglet

– If this droplet is identified as a singlet by any software, the droplet is classified as a singlet.

– In other words, a doublet is only called if all softwares identified that droplet as a doublet.

• AnyDoublet

– A droplet is classified as a singlet only if all softwares identify it as a singlet.

– In other words, a doublet is called if any software identifies that droplet as a doublet.

An example command that combines Demuxlet results, Souporcell results, Solo results and Scds results would look
like this: There are a two different options for using this script:

Combine Results + Joint Droplet Calls

Combine Results

The first option is to select a method to make joint calls on the individual assignment and singlet-doublet droplet types
using the softwares included.

singularity exec Demuxafy.sif Combine_Results.R \
-o $OUTDIR/combined_results.tsv \
--demuxlet $DEMUXLET_OUTDIR \
--souporcell $SOUPORCELL_OUTDIR \
--solo $SOLO_OUTDIR \
--scds $SCDS_OUTDIR \
--method "MajoritySinglet"

The other option is to just combine the results together without instersectional joint calls on the assignment and droplet
type for each droplet.

2.23. Combining Results 89

Demuxafy, Release 0.0.3

singularity exec Demuxafy.sif Combine_Results.R \
-o $OUTDIR/combined_results.tsv \
--demuxlet $DEMUXLET_OUTDIR \
--souporcell $SOUPORCELL_OUTDIR \
--solo $SOLO_OUTDIR \
--scds $SCDS_OUTDIR

Note

The path to the directories will work if the file names are the expected file names based on the example tutorials.
However, if you used a different file naming convention or changed the names, you can also provide the full path to the
exact file for each software.

2.23.3 Results and Interpretation

After running the Combine_Results.R script, you should have two, three or four files depending on if you used
demultiplexing softwares and if you used joint droplet calling. Here, we show the results for the above example that
also provides combined calls with the “MajoritySinglet” calls.

.
combined_results_demultiplexing_summary.tsv
combined_resultsSinglets_upset.pdf
combined_results_summary.tsv
combined_results.tsv
combined_results_w_combined_assignments.tsv

Note

• You will only have the combined_results_demultiplexing_summary.tsv file if you included demultiplex-
ing softwares.

• And you will only have the combined_results_w_combined_assignments.tsv file if you ran it with
--method

Here’s a deeper look at the contents of each of these results:

• combined_resultsSinglets_upset.pdf

– This is an upset figure of the droplets which are colored by their finall individual or doublet classification.

– A filled circle indicates the that those droplets are classified as singlets by that method while empty circles
indicate a doublet classification by that software

90 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

• combined_results.tsv

– Has the selected results combined; only including key columns.

Bar-
code

De-
muxlet_DropletType

De-
muxlet_Individual_Assignment

Soupor-
cell_Individual_Assignment

Soupor-
cell_Cluster

Soupor-
cell_DropletType

scds_scorescds_DropletTypesolo_DropletTypesolo_DropletScore

AAACCTGAGATAGCAT-
1

singlet 41_41 41_41 6 singlet 0.116344358493288sin-
glet

sin-
glet

-
8.442187

AAACCTGAGCAGCGTA-
1

singlet 465_466 465_466 11 singlet 0.539856378453988sin-
glet

sin-
glet

-
2.8096201

AAACCTGAGCGATGAC-
1

singlet 113_113 113_113 5 singlet 0.0237184380134577sin-
glet

sin-
glet

-
2.8949203

AAACCTGAGCGTAGTG-
1

singlet 349_350 349_350 3 singlet 0.163695865366576sin-
glet

sin-
glet

-
5.928284

AAACCTGAGGAGTTTA-
1

singlet 632_633 632_633 7 singlet 0.11591462421927sin-
glet

dou-
blet

0.2749935

AAACCTGAGGCTCATT-
1

singlet 39_39 39_39 12 singlet 0.0479944175570073sin-
glet

sin-
glet

-
5.2726507

AAACCTGAGGGCACTA-
1

singlet 465_466 465_466 11 singlet 0.374426050641161sin-
glet

sin-
glet

-
0.65760195

AAACCTGAGTAATCCC-
1

singlet 660_661 660_661 4 singlet 0.247842972104563sin-
glet

sin-
glet

-
3.5948637

AAACCTGAGTAGCCGA-
1

dou-
blet

doublet unas-
signed

unas-
signed

unas-
signed

0.342998285281922sin-
glet

sin-
glet

-
0.50507957

. .

• combined_results_summary.tsv

– The number of each of the combinations of the software cell type classifications

2.23. Combining Results 91

Demuxafy, Release 0.0.3

De-
muxlet_DropletType

Soupor-
cell_DropletType

scds_DropletType solo_DropletType N

singlet singlet singlet singlet 16193
doublet doublet doublet doublet 1714
singlet singlet singlet doublet 947
doublet doublet singlet singlet 468
singlet singlet doublet singlet 392
singlet singlet doublet doublet 345
doublet doublet singlet doublet 335
doublet singlet singlet singlet 171
doublet doublet doublet singlet 169
doublet singlet doublet doublet 114
doublet singlet singlet doublet 44
doublet singlet doublet singlet 18
singlet doublet singlet singlet 17
singlet unassigned singlet singlet 13
doublet unassigned singlet singlet 11
singlet doublet doublet doublet 9
singlet doublet singlet doublet 6
singlet doublet doublet singlet 5
doublet unassigned singlet doublet 4
doublet unassigned doublet doublet 3
doublet unassigned doublet singlet 2
unassigned unassigned singlet singlet 2

• combined_results_demultiplexing_summary.tsv

– Summary of the number of each of the combination of classifications by demultiplexing software:

Demuxlet_Individual_Assignment Souporcell_Individual_Assignment N
doublet doublet 2706
352_353 352_353 1603
43_43 43_43 1547
597_598 597_598 1510
349_350 349_350 1450
42_42 42_42 1417
660_661 660_661 1358
113_113 113_113 1333
39_39 39_39 1289
.

• combined_results_w_combined_assignments.tsv

– Dataframe combining all the software results together + combined assignment based on selected method:

92 Chapter 2. Demultiplexing and Doublet Detecting Summary

Demuxafy, Release 0.0.3

Bar-
code

De-
muxlet_DropletType

De-
muxlet_Individual_Assignment

Soupor-
cell_Cluster

Soupor-
cell_Individual_Assignment

Soupor-
cell_DropletType

scds_scorescds_DropletTypesolo_DropletTypesolo_DropletScoreMa-
jori-
tySin-
glet_DropletType

Major-
itySin-
glet_Individual_Assignment

AAACCTGAGATAGCAT-
1

sin-
glet

41_41 6 41_41 sin-
glet

0.116344358493288sin-
glet

sin-
glet

-
8.442187

singlet 41_41

AAACCTGAGCAGCGTA-
1

sin-
glet

465_466 11 465_466 sin-
glet

0.539856378453988sin-
glet

sin-
glet

-
2.8096201

singlet 465_466

AAACCTGAGCGATGAC-
1

sin-
glet

113_113 5 113_113 sin-
glet

0.0237184380134577sin-
glet

sin-
glet

-
2.8949203

singlet 113_113

AAACCTGAGCGTAGTG-
1

sin-
glet

349_350 3 349_350 sin-
glet

0.163695865366576sin-
glet

sin-
glet

-
5.928284

singlet 349_350

AAACCTGAGGAGTTTA-
1

sin-
glet

632_633 7 632_633 sin-
glet

0.11591462421927sin-
glet

dou-
blet

0.2749935singlet 632_633

AAACCTGAGGCTCATT-
1

sin-
glet

39_39 12 39_39 sin-
glet

0.0479944175570073sin-
glet

sin-
glet

-
5.2726507

singlet 39_39

AAACCTGAGGGCACTA-
1

sin-
glet

465_466 11 465_466 sin-
glet

0.374426050641161sin-
glet

sin-
glet

-
0.65760195

singlet 465_466

AAACCTGAGTAATCCC-
1

sin-
glet

660_661 4 660_661 sin-
glet

0.247842972104563sin-
glet

sin-
glet

-
3.5948637

singlet 660_661

AAACCTGAGTAGCCGA-
1

dou-
blet

doublet unas-
signed

doublet dou-
blet

0.342998285281922sin-
glet

sin-
glet

-
0.50507957

dou-
blet

doublet

. .

2.23.4 Citation

If you used the Demuxafy platform for analysis, please reference our paper (REFERENCE).

2.23. Combining Results 93

Demuxafy, Release 0.0.3

94 Chapter 2. Demultiplexing and Doublet Detecting Summary

CHAPTER

THREE

SUPPORT

If you’re having trouble with any part of the Demultiplexing and Doublet Detecting Pipeline, feel free to submit an
issue.

95

https://github.com/drneavin/Demultiplexing_Doublet_Detecting_Docs/issues

	Reason for this Software
	Demultiplexing and Doublet Detecting Summary
	Background
	Reason for this Software
	Demultiplexing and Doublet Detecting Summary

	Support
	Software Selection Recommendations
	Installation
	Data Preparation
	Data Required
	SNP Genotype Pre-processing
	Filter for Common SNPs
	Filter for SNPs overlapping Exons

	Test Dataset
	10x Directories + Other Necessary Files
	Seurat Object

	Considerations for Other Single Cell Data Types
	snRNA-seq
	Demultiplexing Softwares
	Doublet Detecting Softwares

	snATAC-seq
	Demultiplexing Softwares
	Doublet Detecting Softwares

	Combined snRNA-seq + snATAC-seq
	Demultiplexing Softwares
	Doublet Detecting Softwares

	Notes About Singularity Images
	Tips and Tricks
	1. Error: File Not Found

	Contact
	Overview of Demultiplexing Softwares
	Demuxlet
	Data
	Run Demuxlet
	Popscle Pileup
	Popscle Demuxlet
	Demuxlet Summary

	Demuxlet Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Freemuxlet
	Data
	Run Freemuxlet
	Popscle Pileup
	Popscle Freemuxlet
	Freemuxlet Summary
	Correlating Cluster to Donor Reference SNP Genotypes (optional)

	Freemuxlet Results and Interpretation
	Merging Results with Other Software Results
	Citation

	ScSplit
	Data
	Run ScSplit
	Prepare Bam file
	Call Sample SNVs
	Demultiplex with ScSplit
	ScSplit Summary
	Correlating Cluster to Donor Reference SNP Genotypes (optional)

	ScSplit Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Souporcell
	Data
	Run Souporcell
	Souporcell Summary
	Correlating Cluster to Donor Reference SNP Genotypes (optional)

	Souporcell Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Vireo
	Data
	Run Vireo
	CellSNP Pileup
	Demultiplex with Vireo

	Vireo Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Overview of Doublet Detecting Softwares
	DoubletDecon
	Data
	Run DoubletDecon
	DoubletDecon Results and Interpretation
	Merging Results with Other Software Results
	Citation

	DoubletDetection
	Data
	Run DoubletDetection
	DoubletDetection Results and Interpretation
	Merging Results with Other Software Results
	Citation

	DoubletFinder
	Data
	Run DoubletFinder
	DoubletFinder Results and Interpretation
	Merging Results with Other Software Results
	Citation

	ScDblFinder
	Data
	Run ScDblFinder
	ScDblFinder Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Scds
	Data
	Run Scds
	Scds Results and Interpretation
	Merging Results with Other Software Retults
	Citation

	Scrublet
	Data
	Run Scrublet
	Scrublet Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Solo
	Data
	Run Solo
	Solo Summary

	Solo Results and Interpretation
	Merging Results with Other Software Results
	Citation

	Combining Results
	Data
	Merging Results with Combine_Results.R
	Results and Interpretation
	Citation

	Support

